Suppr超能文献

基于腕戴日常活动加速度计数据的自监督学习可提高老年人步态的自动检测。

Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults.

机构信息

Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.

Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

出版信息

Sci Rep. 2024 Sep 6;14(1):20854. doi: 10.1038/s41598-024-71491-3.

Abstract

Progressive gait impairment is common among aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 ± 2.27), specificity (98.87 ± 2.15), recall (82.32 ± 11.37), precision (86.69 ± 17.61), and F1 score (82.92 ± 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults, even among those with gait impairments.

摘要

步态进行性损伤在老年人中很常见。在日常生活中对步态进行远程表型分析有可能量化步态变化,并评估可能预防老年人群体残疾的干预措施的效果。在这里,我们开发了 ElderNet,这是一种从腕戴加速度计数据中进行步态检测的自监督学习模型。验证涉及两个不同的队列,包括超过 1000 名没有步态标签的参与者,以及 83 名带有标签数据的参与者:帕金森病、股骨近端骨折、慢性阻塞性肺疾病、充血性心力衰竭和健康成年人。ElderNet 表现出很高的准确性(96.43±2.27)、特异性(98.87±2.15)、召回率(82.32±11.37)、精度(86.69±17.61)和 F1 评分(82.92±13.39)。与两种最先进的步态检测算法相比,所提出的方法具有更高的性能,准确性和 F1 评分均有所提高(p<0.05)。在对构建效度的初步评估中,ElderNet 发现具有不同临床特征的队列之间估计的日常步行时间存在差异,例如移动障碍(p<0.001)和帕金森症(p<0.001)。所提出的自监督方法有可能成为老年人日常生活中步态功能远程表型分析的有用工具,即使在有步态障碍的人群中也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4396/11379690/b19f86be723e/41598_2024_71491_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验