Suppr超能文献

使用腕部佩戴式加速度计数据的自监督学习在老年人日常生活中进行自动步态检测:ElderNet的开发与验证

Automated Gait Detection in Older Adults during Daily-Living using Self-Supervised Learning of Wrist-Worn Accelerometer Data: Development and Validation of ElderNet.

作者信息

Brand Yonatan E, Kluge Felix, Palmerini Luca, Paraschiv-Ionescu Anisoara, Becker Clemens, Cereatti Andrea, Maetzler Walter, Sharrack Basil, Vereijken Beatrix, Yarnall Alison J, Rochester Lynn, Del Din Silvia, Muller Arne, Buchman Aron S, Hausdorff Jeffrey M, Perlman Or

机构信息

Tel Aviv University.

Novartis Pharma AG.

出版信息

Res Sq. 2024 Mar 15:rs.3.rs-4102403. doi: 10.21203/rs.3.rs-4102403/v1.

Abstract

Progressive gait impairment is common in aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1,000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 ± 2.27), specificity (98.87 ± 2.15), recall (82.32 ± 11.37), precision (86.69 ± 17.61), and F1 score (82.92 ± 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised gait detection method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults.

摘要

进行性步态障碍在老年人中很常见。对日常生活中的步态进行远程表型分析有潜力量化步态改变,并评估可能预防老年人群残疾的干预措施的效果。在此,我们开发了ElderNet,这是一种用于从手腕佩戴的加速度计数据中检测步态的自监督学习模型。验证涉及两个不同的队列,包括1000多名没有步态标签的参与者,以及83名有标签数据的参与者:患有帕金森病、股骨近端骨折、慢性阻塞性肺疾病、充血性心力衰竭的老年人,以及健康成年人。ElderNet表现出高准确率(96.43±2.27)、特异性(98.87±2.15)、召回率(82.32±11.37)、精确率(86.69±17.61)和F1分数(82.92±13.39)。与两种最先进的步态检测算法相比,所建议的方法具有更好性能,准确率和F1分数有所提高(p<0.05)。在对结构效度的初步评估中,ElderNet识别出不同临床特征队列(如行动不便(p<0.001)和帕金森症(p<0.001))之间估计每日步行时长的差异。所提出的自监督步态检测方法有潜力成为老年人日常生活中步态功能远程表型分析的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f059/10980143/5ef4fe461d82/nihpp-rs4102403v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验