Brand Yonatan E, Kluge Felix, Palmerini Luca, Paraschiv-Ionescu Anisoara, Becker Clemens, Cereatti Andrea, Maetzler Walter, Sharrack Basil, Vereijken Beatrix, Yarnall Alison J, Rochester Lynn, Del Din Silvia, Muller Arne, Buchman Aron S, Hausdorff Jeffrey M, Perlman Or
Tel Aviv University.
Novartis Pharma AG.
Res Sq. 2024 Mar 15:rs.3.rs-4102403. doi: 10.21203/rs.3.rs-4102403/v1.
Progressive gait impairment is common in aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1,000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 ± 2.27), specificity (98.87 ± 2.15), recall (82.32 ± 11.37), precision (86.69 ± 17.61), and F1 score (82.92 ± 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised gait detection method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults.
进行性步态障碍在老年人中很常见。对日常生活中的步态进行远程表型分析有潜力量化步态改变,并评估可能预防老年人群残疾的干预措施的效果。在此,我们开发了ElderNet,这是一种用于从手腕佩戴的加速度计数据中检测步态的自监督学习模型。验证涉及两个不同的队列,包括1000多名没有步态标签的参与者,以及83名有标签数据的参与者:患有帕金森病、股骨近端骨折、慢性阻塞性肺疾病、充血性心力衰竭的老年人,以及健康成年人。ElderNet表现出高准确率(96.43±2.27)、特异性(98.87±2.15)、召回率(82.32±11.37)、精确率(86.69±17.61)和F1分数(82.92±13.39)。与两种最先进的步态检测算法相比,所建议的方法具有更好性能,准确率和F1分数有所提高(p<0.05)。在对结构效度的初步评估中,ElderNet识别出不同临床特征队列(如行动不便(p<0.001)和帕金森症(p<0.001))之间估计每日步行时长的差异。所提出的自监督步态检测方法有潜力成为老年人日常生活中步态功能远程表型分析的有价值工具。