Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
Computer Engineering Department, Sharif University of Technology, Tehran, 11155/1639, Iran.
Nat Commun. 2019 May 7;10(1):2082. doi: 10.1038/s41467-019-10154-8.
Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features' dispersion and covariances to population averages, in the context of image-based profiling. We find that data fusion is critical for these metrics to improve results over the prior alternatives, providing at least ~20% better performance in predicting a compound's mechanism of action (MoA) and a gene's pathway.
单细胞分辨率技术需要能够捕捉细胞异质性的计算方法,同时允许对群体进行有效的比较。在这里,我们在基于图像的分析背景下,通过向群体平均值添加特征的离散度和协方差来对细胞群体进行总结。我们发现,对于这些指标来说,数据融合至关重要,其可以提高预测化合物作用机制(MoA)和基因途径的结果,至少比以前的替代方法提高约 20%的性能。