Suppr超能文献

Scellseg:一种通过对比微调实现自适应细胞实例分割的风格感知深度学习工具。

Scellseg: A style-aware deep learning tool for adaptive cell instance segmentation by contrastive fine-tuning.

作者信息

Xun Dejin, Chen Deheng, Zhou Yitian, Lauschke Volker M, Wang Rui, Wang Yi

机构信息

Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China.

出版信息

iScience. 2022 Nov 4;25(12):105506. doi: 10.1016/j.isci.2022.105506. eCollection 2022 Dec 22.

Abstract

Deep learning-based cell segmentation is increasingly utilized in cell biology due to the massive accumulation of large-scale datasets and excellent progress in model architecture and instance representation. However, the development of specialist algorithms has long been hampered by a paucity of annotated training data, whereas the performance of generalist algorithms is limited without experiment-specific calibration. Here, we present Scellseg, an adaptive pipeline that utilizes a style-aware pre-trained model coupled to a contrastive fine-tuning strategy that also learns from unlabeled data. Scellseg achieves state-of-the-art transferability in average precision and Aggregated Jaccard Index on disparate datasets containing microscopy images at three biological levels, from organelle, cell to organism. Interestingly, when fine-tuning Scellseg, we show that performance plateaued after approximately eight images, implying that a specialist model can be obtained with few manual efforts. For convenient dissemination, we develop a graphical user interface that allows biologists to easily specialize their self-adaptive segmentation model.

摘要

由于大规模数据集的大量积累以及模型架构和实例表示方面的卓越进展,基于深度学习的细胞分割在细胞生物学中越来越受到青睐。然而,由于标注训练数据的匮乏,专业算法的开发长期受到阻碍,而通用算法在没有针对特定实验进行校准的情况下性能也很有限。在此,我们提出了Scellseg,这是一种自适应流程,它利用一个风格感知预训练模型,并结合一种对比微调策略,该策略还从未标记数据中学习。在包含从细胞器、细胞到生物体三个生物学层面的显微镜图像的不同数据集上,Scellseg在平均精度和聚合杰卡德指数方面实现了最先进的可迁移性。有趣的是,在对Scellseg进行微调时,我们发现大约八张图像后性能就趋于平稳,这意味着只需很少的人工投入就能获得一个专业模型。为了便于传播,我们开发了一个图形用户界面,使生物学家能够轻松地定制他们的自适应分割模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5315/9678729/974a9ad3a20a/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验