Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Carle Illinois College of Medicine, University of Illinois at Urbana, Urbana-Champaign, Urbana, IL 61820.
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10214-10222. doi: 10.1073/pnas.1901047116. Epub 2019 May 10.
While study in the field of polymer mechanochemistry has yielded mechanophores that perform various chemical reactions in response to mechanical stimuli, there is not yet a triggering method compatible with biological systems. Applications such as using mechanoluminescence to generate localized photon flux in vivo for optogenetics would greatly benefit from such an approach. Here we introduce a method of triggering mechanophores by using high-intensity focused ultrasound (HIFU) as a remote energy source to drive the spatially and temporally resolved mechanical-to-chemical transduction of mechanoresponsive polymers. A HIFU setup capable of controlling the excitation pressure, spatial location, and duration of exposure is employed to activate mechanochemical reactions in a cross-linked elastomeric polymer in a noninvasive fashion. One reaction is the chromogenic isomerization of a naphthopyran mechanophore embedded in a polydimethylsiloxane (PDMS) network. Under HIFU irradiation evidence of the mechanochemical transduction is the observation of a reversible color change as expected for the isomerization. The elastomer exhibits this distinguishable color change at the focal spot, depending on ultrasonic exposure conditions. A second reaction is the demonstration that HIFU irradiation successfully triggers a luminescent dioxetane, resulting in localized generation of visible blue light at the focal spot. In contrast to conventional stimuli such as UV light, heat, and uniaxial compression/tension testing, HIFU irradiation provides spatiotemporal control of the mechanochemical activation through targeted but noninvasive ultrasonic energy deposition. Targeted, remote light generation is potentially useful in biomedical applications such as optogenetics where a light source is used to trigger a cellular response.
虽然聚合物机械化学领域的研究已经产生了机械敏试剂,它们可以响应机械刺激进行各种化学反应,但仍没有与生物系统兼容的触发方法。例如,利用机械发光在体内产生局部光通量用于光遗传学的应用将非常受益于这种方法。在这里,我们介绍了一种使用高强度聚焦超声(HIFU)作为远程能源触发机械敏试剂的方法,以驱动机械响应聚合物的空间和时间分辨的机械到化学转换。采用能够控制激励压力、空间位置和暴露时间的 HIFU 装置以非侵入式方式激活交联弹性体聚合物中的机械化学反应。一个反应是嵌入聚二甲基硅氧烷(PDMS)网络中的萘并吡喃机械敏试剂的发色异构化反应。在 HIFU 辐照下,观察到预期的异构化的可逆颜色变化,证明了机械化学转导的存在。弹性体在取决于超声暴露条件的焦点处表现出这种可区分的颜色变化。第二个反应是证明 HIFU 辐照成功触发了发光的二氧杂环丁烷,导致在焦点处产生局部可见蓝光。与传统刺激(如紫外光、热和单轴压缩/拉伸测试)相比,HIFU 辐照通过靶向但非侵入性的超声能量沉积提供了机械化学激活的时空控制。靶向、远程光的产生在生物医学应用中可能是有用的,例如光遗传学,其中光源用于触发细胞反应。