Laboratoire de Génétique de l'Evolution, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), CNRS UMR 8231, PSL Research University, Paris, France
Laboratoire de Génétique de l'Evolution, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), CNRS UMR 8231, PSL Research University, Paris, France.
J Bacteriol. 2019 Aug 22;201(18). doi: 10.1128/JB.00110-19. Print 2019 Sep 15.
Cellulose-overproducing wrinkly spreader mutants of SBW25 have been the focus of much investigation, but conditions promoting the production of cellulose in ancestral strain SBW25 and its effects and consequences have escaped in-depth investigation through lack of an phenotype. Here, using a custom-built device, we reveal that in static broth microcosms, ancestral SBW25 encounters environmental signals at the air-liquid interface that activate, via three diguanylate cyclase-encoding pathways (Wsp, Aws, and Mws), production of cellulose. Secretion of the polymer at the meniscus leads to modification of the environment and growth of numerous microcolonies that extend from the surface. Accumulation of cellulose and associated microbial growth leads to Rayleigh-Taylor instability resulting in bioconvection and rapid transport of water-soluble products over tens of millimeters. Drawing upon data, we built a mathematical model that recapitulates experimental results and captures the interactions between biological, chemical and physical processes. This work reveals a hitherto unrecognized behavior that manifests at the air-liquid interface that depends on production of cellulose and hints at undiscovered dimensions to bacterial life at surfaces. Additionally, the study links activation of known diguanylate cyclase-encoding pathways to cellulose expression and to signals encountered at the meniscus. Further significance stems from recognition of the consequences of fluid instabilities arising from surface production of cellulose for transport of water-soluble products over large distances.
纤维素高产皱spread 突变体 SBW25 一直是许多研究的焦点,但由于缺乏表型,促进原始菌株 SBW25 产生纤维素的条件及其影响和后果仍未得到深入研究。在这里,我们使用定制的设备揭示了在静态肉汤微宇宙中,原始 SBW25 在气液界面处遇到环境信号,通过三个双鸟苷酸环化酶编码途径(Wsp、Aws 和 Mws)激活纤维素的产生。聚合物在弯月面的分泌导致环境的修饰和许多微菌落的生长,这些微菌落从表面延伸。纤维素的积累和相关的微生物生长导致瑞利-泰勒不稳定性,导致生物对流和水溶性产物在数十毫米内的快速运输。根据数据,我们建立了一个数学模型,该模型再现了实验结果,并捕获了生物、化学和物理过程之间的相互作用。这项工作揭示了一种迄今未被认识的行为,这种行为表现在气液界面上,依赖于纤维素的产生和暗示了表面细菌生活的未被发现的维度。此外,该研究将已知双鸟苷酸环化酶编码途径的激活与纤维素表达以及弯月面遇到的信号联系起来。进一步的意义源于认识到由于表面产生纤维素而导致的流体不稳定性对水溶性产物在长距离内的运输的影响。