Bibault J-E, Xing L, Giraud P, El Ayachy R, Giraud N, Decazes P, Burgun A, Giraud P
Radiation Oncology Department, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France; Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France; Inserm, UMR 1138, Team 22: Information Sciences to support Personalized Medicine, 15, rue de l'École-de-Médecine, 75006 Paris, France.
Laboratory of Artificial Intelligence in Medicine and Biomedical Physics, Stanford University School of Medicine, 875 Blake Wilbur Drive, 94305-5847 Stanford, CA, USA.
Cancer Radiother. 2020 Aug;24(5):403-410. doi: 10.1016/j.canrad.2020.01.011. Epub 2020 Apr 4.
Radiomics are a set of methods used to leverage medical imaging and extract quantitative features that can characterize a patient's phenotype. All modalities can be used with several different software packages. Specific informatics methods can then be used to create meaningful predictive models. In this review, we will explain the major steps of a radiomics analysis pipeline and then present the studies published in the context of radiation therapy.
A literature review was performed on Medline using the search engine PubMed. The search strategy included the search terms "radiotherapy", "radiation oncology" and "radiomics". The search was conducted in July 2019 and reference lists of selected articles were hand searched for relevance to this review.
A typical radiomics workflow always includes five steps: imaging and segmenting, data curation and preparation, feature extraction, exploration and selection and finally modeling. In radiation oncology, radiomics studies have been published to explore different clinical outcome in lung (n=5), head and neck (n=5), esophageal (n=3), rectal (n=3), pancreatic (n=2) cancer and brain metastases (n=2). The quality of these retrospective studies is heterogeneous and their results have not been translated to the clinic.
Radiomics has a great potential to predict clinical outcome and better personalize treatment. But the field is still young and constantly evolving. Improvement in bias reduction techniques and multicenter studies will hopefully allow more robust and generalizable models.
放射组学是一组用于利用医学影像并提取可表征患者表型的定量特征的方法。所有模态都可与几种不同的软件包一起使用。然后可以使用特定的信息学方法来创建有意义的预测模型。在本综述中,我们将解释放射组学分析流程的主要步骤,然后介绍在放射治疗背景下发表的研究。
使用搜索引擎PubMed在Medline上进行文献综述。搜索策略包括搜索词“放射治疗”“放射肿瘤学”和“放射组学”。搜索于2019年7月进行,并对所选文章的参考文献列表进行人工搜索以查找与本综述的相关性。
典型的放射组学工作流程通常包括五个步骤:成像与分割、数据管理与准备、特征提取、探索与选择,最后是建模。在放射肿瘤学中,已经发表了放射组学研究来探索肺癌(n = 5)、头颈癌(n = 5)、食管癌(n = 3)、直肠癌(n = 3)、胰腺癌(n = 2)和脑转移瘤(n = 2)的不同临床结局。这些回顾性研究的质量参差不齐,其结果尚未转化应用于临床。
放射组学在预测临床结局和更好地实现个性化治疗方面具有巨大潜力。但该领域仍处于起步阶段且不断发展。减少偏差技术和多中心研究的改进有望产生更稳健且可推广的模型。