Suppr超能文献

睡眠的温度依赖性

The Temperature Dependence of Sleep.

作者信息

Harding Edward C, Franks Nicholas P, Wisden William

机构信息

Department of Life Sciences, Imperial College London, London, United Kingdom.

Centre for Neurotechnology, Imperial College London, London, United Kingdom.

出版信息

Front Neurosci. 2019 Apr 24;13:336. doi: 10.3389/fnins.2019.00336. eCollection 2019.

Abstract

Mammals have evolved a range of behavioural and neurological mechanisms that coordinate cycles of thermoregulation and sleep. Whether diurnal or nocturnal, sleep onset and a reduction in core temperature occur together. Non-rapid eye movement (NREM) sleep episodes are also accompanied by core and brain cooling. Thermoregulatory behaviours, like nest building and curling up, accompany this circadian temperature decline in preparation for sleeping. This could be a matter of simply comfort as animals seek warmth to compensate for lower temperatures. However, in both humans and other mammals, direct skin warming can shorten sleep-latency and promote NREM sleep. We discuss the evidence that body cooling and sleep are more fundamentally connected and that thermoregulatory behaviours, prior to sleep, form warm microclimates that accelerate NREM directly through neuronal circuits. Paradoxically, this warmth might also induce vasodilation and body cooling. In this way, warmth seeking and nesting behaviour might enhance the circadian cycle by activating specific circuits that link NREM initiation to body cooling. We suggest that these circuits explain why NREM onset is most likely when core temperature is at its steepest rate of decline and why transitions to NREM are accompanied by a decrease in brain temperature. This connection may have implications for energy homeostasis and the function of sleep.

摘要

哺乳动物已经进化出一系列行为和神经机制,用于协调体温调节和睡眠周期。无论昼行性还是夜行性动物,睡眠开始和核心体温降低都是同时发生的。非快速眼动(NREM)睡眠阶段也伴随着核心体温和脑部温度的下降。体温调节行为,如筑巢和蜷缩,伴随着这种昼夜节律性的体温下降,为睡眠做准备。这可能仅仅是为了舒适,因为动物会寻找温暖来补偿较低的温度。然而,在人类和其他哺乳动物中,直接温暖皮肤可以缩短入睡潜伏期并促进NREM睡眠。我们讨论了以下证据:身体降温与睡眠在更根本的层面上存在联系,并且在睡眠前的体温调节行为会形成温暖的微气候,通过神经回路直接加速NREM睡眠。矛盾的是,这种温暖也可能会导致血管舒张和身体降温。通过这种方式,寻求温暖和筑巢行为可能会通过激活将NREM起始与身体降温联系起来的特定回路来增强昼夜节律周期。我们认为,这些回路解释了为什么当核心体温处于最急剧下降速率时NREM起始最有可能发生,以及为什么向NREM的转变伴随着脑部温度的降低。这种联系可能对能量平衡和睡眠功能产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7df/6491889/3b7e29e1c437/fnins-13-00336-g001.jpg

相似文献

1
The Temperature Dependence of Sleep.
Front Neurosci. 2019 Apr 24;13:336. doi: 10.3389/fnins.2019.00336. eCollection 2019.
2
A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus.
Curr Biol. 2018 Jul 23;28(14):2263-2273.e4. doi: 10.1016/j.cub.2018.05.054. Epub 2018 Jul 12.
3
Sleep and thermoregulation.
Curr Opin Physiol. 2020 Jun;15:7-13. doi: 10.1016/j.cophys.2019.11.008.
4
[Sleep and Body Temperature].
Brain Nerve. 2022 Feb;74(2):173-178. doi: 10.11477/mf.1416202003.
5
Body temperature and sleep.
Handb Clin Neurol. 2018;156:341-351. doi: 10.1016/B978-0-444-63912-7.00020-5.
6
Neuronal discharge of preoptic/anterior hypothalamic thermosensitive neurons: relation to NREM sleep.
Am J Physiol. 1995 Nov;269(5 Pt 2):R1240-9. doi: 10.1152/ajpregu.1995.269.5.R1240.
7
Comparative Perspectives that Challenge Brain Warming as the Primary Function of REM Sleep.
iScience. 2020 Oct 17;23(11):101696. doi: 10.1016/j.isci.2020.101696. eCollection 2020 Nov 20.
8
Nitric Oxide Synthase Neurons in the Preoptic Hypothalamus Are NREM and REM Sleep-Active and Lower Body Temperature.
Front Neurosci. 2021 Oct 14;15:709825. doi: 10.3389/fnins.2021.709825. eCollection 2021.
9
A thermoregulatory model of sleep control.
Jpn J Physiol. 1995;45(2):291-309. doi: 10.2170/jjphysiol.45.291.
10
Preoptic/anterior hypothalamic neurons: thermosensitivity in wakefulness and non rapid eye movement sleep.
Brain Res. 1996 Apr 29;718(1-2):76-82. doi: 10.1016/0006-8993(96)00035-2.

引用本文的文献

1
Association between temperature rise from climate normal and sleep quality.
Sci Rep. 2025 Aug 13;15(1):29655. doi: 10.1038/s41598-025-15315-y.
2
Factors Linking Interoception and Sleep Across the Adult Lifespan.
Psychophysiology. 2025 Aug;62(8):e70120. doi: 10.1111/psyp.70120.
3
The Potential Impact of Heat on Athletes' Sleep at the Paris 2024 Olympics and Paralympics Games.
Sleep Sci. 2024 Oct 7;18(2):e236-e240. doi: 10.1055/s-0044-1791236. eCollection 2025 Jun.
4
Detection of Sleep Posture via Humidity Fluctuation Analysis in a Sensor-Embedded Pillow.
Bioengineering (Basel). 2025 Apr 30;12(5):480. doi: 10.3390/bioengineering12050480.
7
Unusual Pattern of Cerebral Electrical Activity in the Mongolian Hamster (Allocricetulus curtatus) During Heterothermia.
Dokl Biol Sci. 2025 Apr;521(1):138-145. doi: 10.1134/S0012496625600022. Epub 2025 Apr 11.
8
Global warming and obesity: External heat exposure as a modulator of energy balance.
FASEB Bioadv. 2025 Mar 18;7(4):e1487. doi: 10.1096/fba.2024-00140. eCollection 2025 Apr.
9
Temperature cues are integrated in a flexible circadian neuropeptidergic feedback circuit to remodel sleep-wake patterns in flies.
PLoS Biol. 2024 Dec 2;22(12):e3002918. doi: 10.1371/journal.pbio.3002918. eCollection 2024 Dec.
10
General Worker's Sleep Disturbances and the Degree of Cold-Heat Symptoms: a national cross-sectional survey.
J Pharmacopuncture. 2024 Sep 30;27(3):199-210. doi: 10.3831/KPI.2024.27.3.199.

本文引用的文献

2
GABA and glutamate neurons in the VTA regulate sleep and wakefulness.
Nat Neurosci. 2019 Jan;22(1):106-119. doi: 10.1038/s41593-018-0288-9. Epub 2018 Dec 17.
3
Hypothalamic Neurons that Regulate Feeding Can Influence Sleep/Wake States Based on Homeostatic Need.
Curr Biol. 2018 Dec 3;28(23):3736-3747.e3. doi: 10.1016/j.cub.2018.09.055. Epub 2018 Nov 21.
4
Rhythms of life: circadian disruption and brain disorders across the lifespan.
Nat Rev Neurosci. 2019 Jan;20(1):49-65. doi: 10.1038/s41583-018-0088-y.
5
Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region.
Science. 2018 Nov 16;362(6416). doi: 10.1126/science.aau5324. Epub 2018 Nov 1.
6
Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice.
Nat Commun. 2018 Oct 8;9(1):4129. doi: 10.1038/s41467-018-06590-7.
7
Neuroscience: A 'Skin Warming' Circuit that Promotes Sleep and Body Cooling.
Curr Biol. 2018 Jul 23;28(14):R800-R802. doi: 10.1016/j.cub.2018.06.043.
8
A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus.
Curr Biol. 2018 Jul 23;28(14):2263-2273.e4. doi: 10.1016/j.cub.2018.05.054. Epub 2018 Jul 12.
9
Savanna chimpanzees adjust sleeping nest architecture in response to local weather conditions.
Am J Phys Anthropol. 2018 Jul;166(3):549-562. doi: 10.1002/ajpa.23461.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验