Suppr超能文献

机器学习在预测经导管主动脉瓣置入术(TAVI)结果中的价值。

Value of machine learning in predicting TAVI outcomes.

作者信息

Lopes R R, van Mourik M S, Schaft E V, Ramos L A, Baan J, Vendrik J, de Mol B A J M, Vis M M, Marquering H A

机构信息

Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Heart Centre, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.

出版信息

Neth Heart J. 2019 Sep;27(9):443-450. doi: 10.1007/s12471-019-1285-7.

Abstract

BACKGROUND

Transcatheter aortic valve implantation (TAVI) has become a commonly applied procedure for high-risk aortic valve stenosis patients. However, for some patients, this procedure does not result in the expected benefits. Previous studies indicated that it is difficult to predict the beneficial effects for specific patients. We aim to study the accuracy of various traditional machine learning (ML) algorithms in the prediction of TAVI outcomes.

METHODS AND RESULTS

Clinical and laboratory data from 1,478 TAVI patients from a single centre were collected. The outcome measures were improvement of dyspnoea and mortality. Three experiments were performed using (1) screening data, (2) laboratory data, and (3) the combination of both. Five well-established ML techniques were implemented, and the models were evaluated based on the area under the curve (AUC). Random forest classifier achieved the highest AUC (0.70) for predicting mortality. Logistic regression had the highest AUC (0.56) in predicting improvement of dyspnoea.

CONCLUSIONS

In our single-centre TAVI population, the tree-based models were slightly more accurate than others in predicting mortality. However, ML models performed poorly in predicting improvement of dyspnoea.

摘要

背景

经导管主动脉瓣植入术(TAVI)已成为高危主动脉瓣狭窄患者常用的治疗方法。然而,对于一些患者而言,该手术并未带来预期的益处。既往研究表明,难以预测特定患者的获益情况。我们旨在研究各种传统机器学习(ML)算法预测TAVI结果的准确性。

方法与结果

收集了来自单一中心的1478例TAVI患者的临床和实验室数据。结局指标为呼吸困难改善情况和死亡率。使用(1)筛选数据、(2)实验室数据以及(3)两者的组合进行了三项实验。实施了五种成熟的ML技术,并基于曲线下面积(AUC)对模型进行评估。随机森林分类器在预测死亡率方面获得了最高的AUC(0.70)。逻辑回归在预测呼吸困难改善方面具有最高的AUC(0.56)。

结论

在我们的单中心TAVI人群中,基于树的模型在预测死亡率方面比其他模型略准确。然而,ML模型在预测呼吸困难改善方面表现不佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dcf/6712116/f5e80c7d5fad/12471_2019_1285_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验