1Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL UK.
2School of Cardiovascular Medicine & Science, The Rayne Institute, Lambeth Wing, St Thomas' Hospital, King's College London, London, SE1 7EH UK.
Commun Biol. 2019 May 17;2:188. doi: 10.1038/s42003-019-0426-2. eCollection 2019.
Human soluble epoxide hydrolase (hsEH) is an enzyme responsible for the inactivation of bioactive epoxy fatty acids, and its inhibition is emerging as a promising therapeutical strategy to target hypertension, cardiovascular disease, pain and insulin sensitivity. Here, we uncover the molecular bases of hsEH inhibition mediated by the endogenous 15-deoxy-Δ-Prostaglandin J (15d-PGJ). Our data reveal a dual inhibitory mechanism, whereby hsEH can be inhibited by reversible docking of 15d-PGJ in the catalytic pocket, as well as by covalent locking of the same compound onto cysteine residues C423 and C522, remote to the active site. Biophysical characterisations allied with in silico investigations indicate that the covalent modification of the reactive cysteines may be part of a hitherto undiscovered allosteric regulatory mechanism of the enzyme. This study provides insights into the molecular modes of inhibition of hsEH epoxy-hydrolytic activity and paves the way for the development of new allosteric inhibitors.
人可溶性环氧化物水解酶(hsEH)是一种负责使生物活性环氧脂肪酸失活的酶,其抑制作用作为治疗高血压、心血管疾病、疼痛和胰岛素敏感性的有前途的治疗策略正在出现。在这里,我们揭示了内源性 15-脱氧-Δ-前列腺素 J(15d-PGJ)介导的 hsEH 抑制的分子基础。我们的数据揭示了双重抑制机制,其中 hsEH 可以通过可逆地将 15d-PGJ 停靠在催化口袋中和通过将相同的化合物共价锁定到远离活性位点的半胱氨酸残基 C423 和 C522 上来被抑制。与计算研究相关的生物物理特性表明,反应性半胱氨酸的共价修饰可能是该酶迄今未发现的变构调节机制的一部分。这项研究提供了 hsEH 环氧水解活性抑制的分子模式的见解,并为开发新的变构抑制剂铺平了道路。