Suppr超能文献

用于理解土耳其克里米亚-刚果出血热动态的前瞻性预测工具。

A prospective prediction tool for understanding Crimean-Congo haemorrhagic fever dynamics in Turkey.

机构信息

Graduate School of Sciences and Engineering, Koç University, İstanbul, Turkey.

Department of Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, İstanbul, Turkey.

出版信息

Clin Microbiol Infect. 2020 Jan;26(1):123.e1-123.e7. doi: 10.1016/j.cmi.2019.05.006. Epub 2019 May 24.

Abstract

OBJECTIVES

We aimed to develop a prospective prediction tool on Crimean-Congo haemorrhagic fever (CCHF) to identify geographic regions at risk. The tool could support public health decision-makers in implementation of an effective control strategy in a timely manner.

METHODS

We used monthly surveillance data between 2004 and 2015 to predict case counts between 2016 and 2017 prospectively. The Turkish nationwide surveillance data set collected by the Ministry of Health contained 10 411 confirmed CCHF cases. We collected potential explanatory covariates about climate, land use, and animal and human populations at risk to capture spatiotemporal transmission dynamics. We developed a structured Gaussian process algorithm and prospectively tested this tool predicting the future year's cases given past years' cases.

RESULTS

We predicted the annual cases in 2016 and 2017 as 438 and 341, whereas the observed cases were 432 and 343, respectively. Pearson's correlation coefficient and normalized root mean squared error values for 2016 and 2017 predictions were (0.83; 0.58) and (0.87; 0.52), respectively. The most important covariates were found to be the number of settlements with fewer than 25 000 inhabitants, latitude, longitude and potential evapotranspiration (evaporation and transpiration).

CONCLUSIONS

Main driving factors of CCHF dynamics were human population at risk in rural areas, geographical dependency and climate effect on ticks. Our model was able to prospectively predict the numbers of CCHF cases. Our proof-of-concept study also provided insight for understanding possible mechanisms of infectious diseases and found important directions for practice and policy to combat against emerging infectious diseases.

摘要

目的

我们旨在开发一种针对克里米亚-刚果出血热(CCHF)的前瞻性预测工具,以确定有风险的地理区域。该工具可以帮助公共卫生决策者及时实施有效的控制策略。

方法

我们使用 2004 年至 2015 年期间的月度监测数据,前瞻性地预测 2016 年至 2017 年的病例数。卫生部收集的土耳其全国范围的监测数据集包含 10411 例确诊的 CCHF 病例。我们收集了有关气候、土地利用以及有风险的动物和人群的潜在解释性协变量,以捕捉时空传播动态。我们开发了一种结构化高斯过程算法,并前瞻性地测试了该工具,根据过去几年的病例预测未来年份的病例。

结果

我们预测 2016 年和 2017 年的年病例数分别为 438 和 341,而实际病例数分别为 432 和 343。2016 年和 2017 年预测的 Pearson 相关系数和归一化均方根误差值分别为(0.83;0.58)和(0.87;0.52)。最重要的协变量是人口少于 25000 人的定居点数量、纬度、经度和潜在蒸散量(蒸发和蒸腾)。

结论

CCHF 动态的主要驱动因素是农村地区有风险的人口、地理依赖性和气候对蜱的影响。我们的模型能够前瞻性地预测 CCHF 病例数。我们的概念验证研究还为理解传染病的可能机制提供了见解,并为打击新发传染病的实践和政策提供了重要方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d592/7129556/a8ba307b1af5/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验