文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结直肠肿瘤芯片系统:精准肿瘤纳米医学的三维工具。

Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine.

机构信息

3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.

ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.

出版信息

Sci Adv. 2019 May 22;5(5):eaaw1317. doi: 10.1126/sciadv.aaw1317. eCollection 2019 May.


DOI:10.1126/sciadv.aaw1317
PMID:31131324
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6531003/
Abstract

Awareness that traditional two-dimensional (2D) in vitro and nonrepresentative animal models may not completely emulate the 3D hierarchical complexity of tissues and organs is on the rise. Therefore, posterior translation into successful clinical application is compromised. To address this dearth, on-chip biomimetic microenvironments powered by microfluidic technologies are being developed to better capture the complexity of in vivo pathophysiology. Here, we describe a "tumor-on-a-chip" model for assessment of precision nanomedicine delivery on which we validate the efficacy of drug-loaded nanoparticles in a gradient fashion. The model validation was performed by viability studies integrated with live imaging to confirm the dose-response effect of cells exposed to the CMCht/PAMAM nanoparticle gradient. This platform also enables the analysis at the gene expression level, where a down-regulation of all the studied genes (, , and ) was observed. This tumor-on-chip model represents an important development in the use of precision nanomedicine toward personalized treatment.

摘要

人们逐渐意识到传统的二维(2D)体外和非代表性的动物模型可能无法完全模拟组织和器官的 3D 层次复杂性。因此,成功转化为临床应用受到了影响。为了解决这一不足,基于微流控技术的芯片仿生微环境正在被开发出来,以更好地捕捉体内病理生理学的复杂性。在这里,我们描述了一种“芯片上的肿瘤”模型,用于评估精密纳米医学输送的效果,我们在该模型上验证了载药纳米颗粒的梯度式疗效。通过整合活细胞成像的生存能力研究对模型进行了验证,以确认细胞暴露于 CMCht/PAMAM 纳米颗粒梯度下的剂量反应效果。该平台还能够进行基因表达水平的分析,观察到所有研究基因(、和)下调。该芯片肿瘤模型是朝着个性化治疗方向使用精密纳米医学的重要进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/953b0a928d12/aaw1317-F5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/005a50ebbd00/aaw1317-F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/afdabb2528ed/aaw1317-F2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/641f9045d54e/aaw1317-F3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/1e9c1b903315/aaw1317-F4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/953b0a928d12/aaw1317-F5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/005a50ebbd00/aaw1317-F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/afdabb2528ed/aaw1317-F2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/641f9045d54e/aaw1317-F3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/1e9c1b903315/aaw1317-F4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d0/6531003/953b0a928d12/aaw1317-F5.jpg

相似文献

[1]
Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine.

Sci Adv. 2019-5-22

[2]
Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.

Adv Drug Deliv Rev. 2013-8-8

[3]
Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.

ACS Nano. 2023-8-8

[4]
Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.

Curr Pharm Des. 2019

[5]
Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient.

Biomaterials. 2017-10-3

[6]
Blood-Vessel-on-a-Chip Platforms for Evaluating Nanoparticle Drug Delivery Systems.

Curr Drug Metab. 2018

[7]
In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients.

Exp Cell Res. 2019-7-26

[8]
Microfluidics for studying metastatic patterns of lung cancer.

J Nanobiotechnology. 2019-5-27

[9]
Parallel and large-scale antitumor investigation using stable chemical gradient and heterotypic three-dimensional tumor coculture in a multi-layered microfluidic device.

Biotechnol J. 2021-10

[10]
Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine.

Small. 2020-12

引用本文的文献

[1]
Advancements in Microfluidic Organ-on-a-chip for Oral Medicine.

Int Dent J. 2025-7-30

[2]
Exploring Experimental Models of Colorectal Cancer: A Critical Appraisal from 2D Cell Systems to Organoids, Humanized Mouse Avatars, Organ-on-Chip, CRISPR Engineering, and AI-Driven Platforms-Challenges and Opportunities for Translational Precision Oncology.

Cancers (Basel). 2025-6-26

[3]
Micro-hydrogel molding-assisted fabrication of a PDMS-based microfluidic concentration-gradient generator for dynamic anticancer drug testing.

RSC Adv. 2025-6-23

[4]
Targeting Metastasis: Exploring the Impact of Microbial Infections on Cancer Progression Through Innovative Biological Models.

Curr Microbiol. 2025-6-7

[5]
Cancer-on-a-chip for precision cancer medicine.

Lab Chip. 2025-5-16

[6]
Advancing Organ-on-a-Chip Systems: The Role of Scaffold Materials and Coatings in Engineering Cell Microenvironment.

Polymers (Basel). 2025-5-6

[7]
Advances in the Model Structure of In Vitro Vascularized Organ-on-a-Chip.

Cyborg Bionic Syst. 2024-4-25

[8]
Combating cancer immunotherapy resistance: a nano-medicine perspective.

Cancer Commun (Lond). 2025-7

[9]
The Evolution of Anticancer 3D In Vitro Models: The Potential Role of Machine Learning and AI in the Next Generation of Animal-Free Experiments.

Cancers (Basel). 2025-2-19

[10]
Cellular Systems for Colorectal Stem Cancer Cell Research.

Cells. 2025-1-22

本文引用的文献

[1]
Tumor-derived extracellular vesicles in angiogenesis.

Biomed Pharmacother. 2018-4-7

[2]
Mimicking Embedded Vasculature Structure for 3D Cancer on a Chip Approaches through Micromilling.

Sci Rep. 2017-12-1

[3]
Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology.

Biomed Microdevices. 2017-9-7

[4]
Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment.

J Colloid Interface Sci. 2017-7-17

[5]
Revisiting the hallmarks of cancer.

Am J Cancer Res. 2017-5-1

[6]
Endothelium originated from colorectal cancer stem cells constitute cancer blood vessels.

Cancer Sci. 2017-7

[7]
On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics.

Nat Protoc. 2017-5

[8]
MMP1 expression is activated by Slug and enhances multi-drug resistance (MDR) in breast cancer.

PLoS One. 2017-3-23

[9]
The effect of vascular endothelial growth factor-1 expression on survival of advanced colorectal cancer patients.

Libyan J Med. 2017-12

[10]
Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models.

Stem Cell Rev Rep. 2017-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索