Suppr超能文献

哺乳动物动粒-微管界面:具有许多微管的稳健力学和计算。

The mammalian kinetochore-microtubule interface: robust mechanics and computation with many microtubules.

机构信息

Tetrad Graduate Program, University of California, San Francisco, CA 94143, USA; Cell & Tissue Biology Department, University of California, San Francisco, CA 94143, USA.

Tetrad Graduate Program, University of California, San Francisco, CA 94143, USA; Cell & Tissue Biology Department, University of California, San Francisco, CA 94143, USA.

出版信息

Curr Opin Cell Biol. 2019 Oct;60:60-67. doi: 10.1016/j.ceb.2019.04.004. Epub 2019 May 25.

Abstract

The kinetochore drives chromosome segregation at cell division. It acts as a physical link between chromosomes and dynamic microtubules, and as a signaling hub detecting and processing microtubule attachments to control anaphase onset. The mammalian kinetochore is a large macromolecular machine that forms a dynamic interface with the many microtubules that it binds. While we know most of the kinetochore's component parts, how they work together to give rise to its robust functions remains poorly understood. Here we highlight recent findings that shed light on this question, driven by an expanding physical and molecular toolkit. We present emerging principles that underlie the kinetochore's robust microtubule grip, such as redundancy, specialization, and dynamicity, and present signal processing principles that connect this microtubule grip to robust computation. Throughout, we identify open questions, and define simple engineering concepts that provide insight into kinetochore function.

摘要

着丝粒在细胞分裂时驱动染色体分离。它作为染色体和动态微管之间的物理连接,以及作为一个信号中心,检测和处理微管附着,以控制后期起始。哺乳动物着丝粒是一个大型的大分子机器,与它结合的许多微管形成一个动态界面。虽然我们知道着丝粒的大部分组成部分,但它们如何协同工作以产生其强大的功能仍然知之甚少。在这里,我们强调了最近的发现,这些发现是由不断扩展的物理和分子工具推动的。我们提出了一些基本原则,这些原则是基于着丝粒强大的微管握力,例如冗余性、专业化和动态性,并提出了将这种微管握力与强大的计算联系起来的信号处理原则。在整个过程中,我们确定了一些悬而未决的问题,并定义了一些简单的工程概念,这些概念为理解着丝粒的功能提供了思路。

相似文献

1
The mammalian kinetochore-microtubule interface: robust mechanics and computation with many microtubules.
Curr Opin Cell Biol. 2019 Oct;60:60-67. doi: 10.1016/j.ceb.2019.04.004. Epub 2019 May 25.
2
Hec1 Tail Phosphorylation Differentially Regulates Mammalian Kinetochore Coupling to Polymerizing and Depolymerizing Microtubules.
Curr Biol. 2017 Jun 5;27(11):1692-1699.e3. doi: 10.1016/j.cub.2017.04.058. Epub 2017 May 25.
3
The Astrin-SKAP complex reduces friction at the kinetochore-microtubule interface.
Curr Biol. 2022 Jun 20;32(12):2621-2631.e3. doi: 10.1016/j.cub.2022.04.061. Epub 2022 May 16.
4
Merotelic kinetochores in mammalian tissue cells.
Philos Trans R Soc Lond B Biol Sci. 2005 Mar 29;360(1455):553-68. doi: 10.1098/rstb.2004.1610.
5
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore.
Nat Rev Mol Cell Biol. 2013 Jan;14(1):25-37. doi: 10.1038/nrm3494.
7
The composition, functions, and regulation of the budding yeast kinetochore.
Genetics. 2013 Aug;194(4):817-46. doi: 10.1534/genetics.112.145276.
8
Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin-Interacting Surfaces.
Curr Biol. 2017 Dec 4;27(23):3666-3675.e6. doi: 10.1016/j.cub.2017.10.018. Epub 2017 Nov 16.
10
Attachment issues: kinetochore transformations and spindle checkpoint silencing.
Curr Opin Cell Biol. 2016 Apr;39:101-8. doi: 10.1016/j.ceb.2016.02.016. Epub 2016 Mar 3.

引用本文的文献

1
Mechanisms underlying spindle assembly and robustness.
Nat Rev Mol Cell Biol. 2023 Aug;24(8):523-542. doi: 10.1038/s41580-023-00584-0. Epub 2023 Mar 28.
2
The Four Causes: The Functional Architecture of Centromeres and Kinetochores.
Annu Rev Genet. 2022 Nov 30;56:279-314. doi: 10.1146/annurev-genet-072820-034559. Epub 2022 Sep 2.
3
Self-organization of kinetochore-fibers in human mitotic spindles.
Elife. 2022 Jul 25;11:e75458. doi: 10.7554/eLife.75458.
4
The Astrin-SKAP complex reduces friction at the kinetochore-microtubule interface.
Curr Biol. 2022 Jun 20;32(12):2621-2631.e3. doi: 10.1016/j.cub.2022.04.061. Epub 2022 May 16.
5
Bacterial developmental checkpoint that directly monitors cell surface morphogenesis.
Dev Cell. 2022 Feb 7;57(3):344-360.e6. doi: 10.1016/j.devcel.2021.12.021. Epub 2022 Jan 21.

本文引用的文献

1
Ectopic Activation of the Spindle Assembly Checkpoint Signaling Cascade Reveals Its Biochemical Design.
Curr Biol. 2019 Jan 7;29(1):104-119.e10. doi: 10.1016/j.cub.2018.11.054. Epub 2018 Dec 27.
2
Reconstitution of a 26-Subunit Human Kinetochore Reveals Cooperative Microtubule Binding by CENP-OPQUR and NDC80.
Mol Cell. 2018 Sep 20;71(6):923-939.e10. doi: 10.1016/j.molcel.2018.07.038. Epub 2018 Aug 30.
3
Cdt1 stabilizes kinetochore-microtubule attachments via an Aurora B kinase-dependent mechanism.
J Cell Biol. 2018 Oct 1;217(10):3446-3463. doi: 10.1083/jcb.201705127. Epub 2018 Aug 28.
4
Loss of Kif18A Results in Spindle Assembly Checkpoint Activation at Microtubule-Attached Kinetochores.
Curr Biol. 2018 Sep 10;28(17):2685-2696.e4. doi: 10.1016/j.cub.2018.06.026. Epub 2018 Aug 16.
5
The kinetochore-microtubule interface at a glance.
J Cell Sci. 2018 Aug 16;131(16):jcs214577. doi: 10.1242/jcs.214577.
7
Kinase and Phosphatase Cross-Talk at the Kinetochore.
Front Cell Dev Biol. 2018 Jun 19;6:62. doi: 10.3389/fcell.2018.00062. eCollection 2018.
8
Microtubules assemble near most kinetochores during early prometaphase in human cells.
J Cell Biol. 2018 Aug 6;217(8):2647-2659. doi: 10.1083/jcb.201710094. Epub 2018 Jun 15.
9
Complete microtubule-kinetochore occupancy favours the segregation of merotelic attachments.
Nat Commun. 2018 May 23;9(1):2042. doi: 10.1038/s41467-018-04427-x.
10
Chromosome Segregation Is Biased by Kinetochore Size.
Curr Biol. 2018 May 7;28(9):1344-1356.e5. doi: 10.1016/j.cub.2018.03.023. Epub 2018 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验