Suppr超能文献

基于脑电图信号脑连接分析的单手自主运动解码

Decoding Voluntary Movement of Single Hand Based on Analysis of Brain Connectivity by Using EEG Signals.

作者信息

Li Ting, Xue Tao, Wang Baozeng, Zhang Jinhua

机构信息

Shaanxi Key Laboratory of Clothing Intelligence, School of Computer Science, Xi'an Polytechnic University, Xi'an, China.

State and Local Joint Engineering Research Center for Advanced Networking and Intelligent Information Services, School of Computer Science, Xi'an Polytechnic University, Xi'an, China.

出版信息

Front Hum Neurosci. 2018 Nov 5;12:381. doi: 10.3389/fnhum.2018.00381. eCollection 2018.

Abstract

Research about decoding neurophysiological signals mainly aims to elucidate the details of human motion control from the perspective of neural activity. We performed brain connectivity analysis with EEG to propose a brain functional network (BFN) and used a feature extraction algorithm for decoding the voluntary hand movement of a subject. By analyzing the characteristic parameters obtained from the BFN, we extracted the most important electrode nodes and frequencies for identifying the direction of movement of a hand. The results demonstrated that the most sensitive EEG components were for frequencies delta, theta, and gamma1 from electrodes F4, F8, C3, Cz, C4, CP4, T3, and T4. Finally, we proposed a model for decoding voluntary movement of the right hand by using a hierarchical linear model (HLM). Through a voluntary hand movement experiment in a spiral trajectory, the Poisson coefficient between the measurement trajectory and the decoding trajectory was used as a test standard to compare the HLM with the traditional multiple linear regression model. It was found that the decoding model based on the HLM obtained superior results. This paper contributes a feature extraction method based on brain connectivity analysis that can mine more comprehensive feature information related to a specific mental state of a subject. The decoding model based on the HLM possesses a strong structure for data manipulation that facilitates precise decoding.

摘要

关于解码神经生理信号的研究主要旨在从神经活动的角度阐明人类运动控制的细节。我们使用脑电图进行脑连接性分析,以提出一种脑功能网络(BFN),并使用一种特征提取算法来解码受试者的自主手部运动。通过分析从BFN获得的特征参数,我们提取了用于识别手部运动方向的最重要电极节点和频率。结果表明,最敏感的脑电图成分来自电极F4、F8、C3、Cz、C4、CP4、T3和T4的δ、θ和γ1频率。最后,我们提出了一种使用分层线性模型(HLM)来解码右手自主运动的模型。通过在螺旋轨迹上进行的自主手部运动实验,将测量轨迹和解码轨迹之间的泊松系数用作测试标准,以将HLM与传统的多元线性回归模型进行比较。结果发现,基于HLM的解码模型获得了更好的结果。本文贡献了一种基于脑连接性分析的特征提取方法,该方法可以挖掘与受试者特定心理状态相关的更全面的特征信息。基于HLM的解码模型具有强大的数据处理结构,便于精确解码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ad/6231062/750b529256b0/fnhum-12-00381-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验