Suppr超能文献

用于制备贵金属锇、铼、铱和铑纳米粒子体系的较少研究的微乳液合成方法综述。

A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh.

作者信息

Soleimani Zohr Shiri Mohammad, Henderson William, Mucalo Michael R

机构信息

School of Science, University of Waikato, Hamilton 3240, New Zealand.

出版信息

Materials (Basel). 2019 Jun 12;12(12):1896. doi: 10.3390/ma12121896.

Abstract

This review focuses on the recent advances in the lesser-studied microemulsion synthesis methodologies of the following noble metal colloid systems (i.e., Os, Re, Ir, and Rh) using either a normal or reverse micelle templating system. The aim is to demonstrate the utility and potential of using this microemulsion-based approach to synthesize these noble metal nanoparticle systems. Firstly, some fundamentals and important factors of the microemulsion synthesis methodology are introduced. Afterward, a review of the investigations on the microemulsion syntheses of Os, Re, Ir, and Rh nanoparticle (NP) systems (in all forms, viz., metallic, oxide, mixed-metal, and discrete molecular complexes) is presented for work published in the last ten years. The chosen noble metals are traditionally very reactive in nanosized dimensions and have a strong tendency to aggregate when prepared via other methods. Also, the particle size and particle size distribution of these colloids can have a significant impact on their catalytic performance. It is shown that the microemulsion approach has the capability to better stabilize these metal colloids and can control the size of the synthesized NPs. This generally leads to smaller particles and higher catalytic activity when they are tested in applications.

摘要

本综述聚焦于使用正相或反相胶束模板体系,对以下贵金属胶体体系(即锇、铼、铱和铑)中研究较少的微乳液合成方法的最新进展。目的是展示使用这种基于微乳液的方法来合成这些贵金属纳米粒子体系的实用性和潜力。首先,介绍了微乳液合成方法的一些基本原理和重要因素。随后,对过去十年发表的关于锇、铼、铱和铑纳米粒子(NP)体系(所有形式,即金属、氧化物、混合金属和离散分子络合物)的微乳液合成研究进行了综述。所选的贵金属在纳米尺寸下传统上具有很高的反应活性,并且通过其他方法制备时具有很强的聚集倾向。此外,这些胶体的粒径和粒径分布对其催化性能可能有显著影响。结果表明,微乳液方法有能力更好地稳定这些金属胶体,并能控制合成纳米粒子的尺寸。当在应用中进行测试时,这通常会导致颗粒更小且催化活性更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14f3/6631116/9ea2f1600ac8/materials-12-01896-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验