Department of Biology and Program in Molecular Biology, Pomona College, Claremont, California, United States of America.
USDA-ARS, Systematic Mycology and Microbiology Laboratory, Beltsville, Maryland, United States of America.
PLoS One. 2019 Jun 24;14(6):e0218605. doi: 10.1371/journal.pone.0218605. eCollection 2019.
The integration of conflicting signals in response to environmental constraints is essential to efficient plant growth and development. The light-dependent and the stress hormone abscisic acid (ABA)-dependent signaling pathways play opposite roles in many aspects of plant development. While these pathways have been extensively studied, the complex nature of their molecular dialogue is still obscure. When mobilized by the Arabidopsis thaliana β-glucosidase 1 (AtBG1), the glucose ester-conjugated inactive form of ABA has proven to be a source of the active hormone that is essential for the adaptation of the plant to water deficit, as evidenced by the impaired stomatal closure of atbg1 mutants in response to water stress. In a suppressor screen designed to identify the molecular components of AtBG1-associated physiological and developmental mechanisms, we identified the mutation variant of AtBG1 traits (vat1), a new mutant allele of the red light/far-red light photoreceptor PHYTOCHROME B (PHYB). Our study reveals that atbg1 plants harbor increased stomatal density in addition to impaired stomatal closure. We also provide evidence that the vat1/phyb mutation can restore the apparent transpiration of the atbg1 mutant by decreasing stomatal aperture and restoring a stomatal density similar to wild-type plants. Expression of key regulators of stomatal development showed a crosstalk between AtBG1-mediated ABA signaling and PHYB-mediated stomatal development. We conclude that the AtBG1-dependent regulation of ABA homeostasis and the PHYB-mediated light signaling pathways act antagonistically in the control of stomatal development.
整合对环境限制的冲突信号对于植物的高效生长和发育至关重要。光依赖和胁迫激素脱落酸(ABA)依赖的信号通路在植物发育的许多方面发挥着相反的作用。虽然这些途径已经得到了广泛的研究,但它们分子对话的复杂性质仍然不清楚。当拟南芥β-葡萄糖苷酶 1(AtBG1)被激活时,葡萄糖酯结合的 ABA 无活性形式已被证明是植物适应水分亏缺所必需的活性激素的来源,这一点可以从 atbg1 突变体在水分胁迫下气孔关闭受损得到证明。在一个旨在鉴定与 AtBG1 相关的生理和发育机制的分子成分的抑制筛选中,我们鉴定了 AtBG1 性状的突变变体(vat1),这是红光/远红光光受体 PHYTOCHROME B(PHYB)的一个新的突变等位基因。我们的研究表明,atbg1 植物除了气孔关闭受损外,还具有增加的气孔密度。我们还提供了证据表明,vat1/phyb 突变可以通过降低气孔开度并恢复类似于野生型植物的气孔密度来恢复 atbg1 突变体的明显蒸腾作用。气孔发育关键调节剂的表达显示出 AtBG1 介导的 ABA 信号和 PHYB 介导的气孔发育之间的串扰。我们得出结论,AtBG1 依赖性 ABA 稳态调节和 PHYB 介导的光信号通路在控制气孔发育方面起拮抗作用。