London Centre for Nanotechnology , University College London , 17-19 Gordon Street , London WC1H 0AH , United Kingdom.
Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom.
ACS Nano. 2019 Jul 23;13(7):7949-7956. doi: 10.1021/acsnano.9b02424. Epub 2019 Jul 1.
Over the past decades, atomic force microscopy (AFM) has emerged as an increasingly powerful tool to study the dynamics of biomolecules at nanometer length scales. However, the more stochastic the nature of such biomolecular dynamics, the harder it becomes to distinguish them from AFM measurement noise. Rapid, stochastic dynamics are inherent to biological systems comprising intrinsically disordered proteins. One role of such proteins is in the formation of the transport barrier of the nuclear pore complex (NPC): the selective gateway for macromolecular traffic entering or exiting the nucleus. Here, we use AFM to observe the dynamics of intrinsically disordered proteins from two systems: the transport barrier of native NPCs and the transport barrier of a mimetic NPC made using a DNA origami scaffold. Analyzing data recorded with 50-200 ms temporal resolution, we highlight the importance of drift correction and appropriate baseline measurements in such experiments. In addition, we describe an autocorrelation analysis to quantify time scales of observed dynamics and to assess their veracity-an analysis protocol that lends itself to the quantification of stochastic fluctuations in other biomolecular systems. The results reveal the surprisingly slow rate of stochastic, collective transitions inside mimetic NPCs, highlighting the importance of FG-nup cohesive interactions.
在过去的几十年中,原子力显微镜(AFM)已成为研究生物分子纳米级动力学的越来越强大的工具。然而,生物分子动力学的随机性越高,将其与 AFM 测量噪声区分开来就越困难。快速的随机动力学是由包含固有无序蛋白质的生物系统所固有。这些蛋白质的一个作用是形成核孔复合物(NPC)的运输屏障:大分子进出细胞核的选择性门户。在这里,我们使用 AFM 观察两个系统中固有无序蛋白质的动力学:天然 NPC 的运输屏障和使用 DNA 折纸支架制成的仿生 NPC 的运输屏障。通过分析以 50-200ms 时间分辨率记录的数据,我们强调了在这种实验中漂移校正和适当的基线测量的重要性。此外,我们描述了一种自相关分析方法来量化观察到的动力学的时间尺度,并评估其真实性——这一分析方案可用于对其他生物分子系统中的随机波动进行定量分析。结果揭示了仿生 NPC 内部随机集体跃迁的惊人慢速率,突出了 FG-nup 凝聚相互作用的重要性。