Suppr超能文献

提高公民科学大数据质量:超越随意采样。

Improving big citizen science data: Moving beyond haphazard sampling.

机构信息

Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia.

Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia.

出版信息

PLoS Biol. 2019 Jun 27;17(6):e3000357. doi: 10.1371/journal.pbio.3000357. eCollection 2019 Jun.

Abstract

Citizen science is mainstream: millions of people contribute data to a growing array of citizen science projects annually, forming massive datasets that will drive research for years to come. Many citizen science projects implement a "leaderboard" framework, ranking the contributions based on number of records or species, encouraging further participation. But is every data point equally "valuable?" Citizen scientists collect data with distinct spatial and temporal biases, leading to unfortunate gaps and redundancies, which create statistical and informational problems for downstream analyses. Up to this point, the haphazard structure of the data has been seen as an unfortunate but unchangeable aspect of citizen science data. However, we argue here that this issue can actually be addressed: we provide a very simple, tractable framework that could be adapted by broadscale citizen science projects to allow citizen scientists to optimize the marginal value of their efforts, increasing the overall collective knowledge.

摘要

公民科学已成为主流

每年都有数以百万计的人将数据贡献给日益增多的公民科学项目,形成了庞大的数据集,将在未来几年推动研究。许多公民科学项目实施了“排行榜”框架,根据记录或物种的数量对贡献进行排名,鼓励进一步参与。但是每个数据点都同样“有价值”吗?公民科学家收集数据时存在明显的空间和时间偏差,导致不幸的差距和冗余,这给下游分析造成了统计和信息问题。到目前为止,数据的随意结构被视为公民科学数据中不幸但不可改变的一个方面。然而,我们在这里认为,这个问题实际上是可以解决的:我们提供了一个非常简单、易于处理的框架,广泛的公民科学项目可以采用这个框架,让公民科学家优化他们努力的边际价值,从而增加整体的集体知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89b2/6619805/e9459d92d286/pbio.3000357.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验