Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
Department of Physics, Florida State University, Tallahassee, FL 32306, USA.
Biomolecules. 2020 Jun 23;10(6):946. doi: 10.3390/biom10060946.
How sequences of intrinsically disordered proteins (IDPs) code for their conformational dynamics is poorly understood. Here, we combined NMR spectroscopy, small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations to characterize the conformations and dynamics of ChiZ1-64. MD simulations, first validated by SAXS and secondary chemical shift data, found scant α-helices or β-strands but a considerable propensity for polyproline II (PPII) torsion angles. Importantly, several blocks of residues (e.g., 11-29) emerge as "correlated segments", identified by their frequent formation of PPII stretches, salt bridges, cation-π interactions, and sidechain-backbone hydrogen bonds. NMR relaxation experiments showed non-uniform transverse relaxation rates (s) and nuclear Overhauser enhancements (NOEs) along the sequence (e.g., high s and NOEs for residues 11-14 and 23-28). MD simulations further revealed that the extent of segmental correlation is sequence-dependent; segments where internal interactions are more prevalent manifest elevated "collective" motions on the 5-10 ns timescale and suppressed local motions on the sub-ns timescale. Amide proton exchange rates provides corroboration, with residues in the most correlated segment exhibiting the highest protection factors. We propose the correlated segment as a defining feature for the conformations and dynamics of IDPs.
内在无规蛋白质 (IDP) 的序列如何编码其构象动力学尚不清楚。在这里,我们结合 NMR 光谱、小角 X 射线散射 (SAXS) 和分子动力学 (MD) 模拟来表征 ChiZ1-64 的构象和动力学。MD 模拟首先通过 SAXS 和二级化学位移数据进行验证,发现几乎没有 α-螺旋或 β-折叠,但具有相当大的聚脯氨酸 II (PPII) 扭转角倾向。重要的是,几个残基块(例如 11-29)作为“相关片段”出现,通过其频繁形成 PPII 延伸、盐桥、阳离子-π 相互作用和侧链-骨架氢键来识别。NMR 弛豫实验显示序列中不均匀的横向弛豫率 (s) 和核 Overhauser 增强 (NOE)(例如,残基 11-14 和 23-28 的高 s 和 NOE)。MD 模拟进一步表明,片段相关性的程度是序列依赖性的;内部相互作用更为普遍的片段在 5-10 ns 时间尺度上表现出更高的“集体”运动,而在亚纳秒时间尺度上则抑制了局部运动。酰胺质子交换速率提供了佐证,具有最高保护因子的残基位于最相关的片段中。我们提出相关片段作为 IDP 构象和动力学的定义特征。