Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Nat Protoc. 2019 Aug;14(8):2416-2436. doi: 10.1038/s41596-019-0184-0. Epub 2019 Jul 3.
Soft matter can serve as a template to guide the growth of inorganic components with well-controlled structural features. However, the limited design space of conventional organic and biomolecular templates restricts the complexity and accuracy of templated growth. In past decades, the blossoming of structural DNA nanotechnology has provided us with a large reservoir of delicate-framework nucleic acids with design precision down to a single base. Here, we describe a DNA origami silicification (DOS) approach for generating complex silica composite nanomaterials. By utilizing modified silica sol-gel chemistry, pre-hydrolyzed silica precursor clusters can be uniformly coated onto the surface of DNA frameworks; thus, user-defined DNA-silica hybrid materials with ~3-nm precision can be achieved. More importantly, this method is applicable to various 1D, 2D and 3D DNA frameworks that range from 10 to >1,000 nm. Compared to pure DNA scaffolds, a tenfold increase in the Young's modulus (E modulus) of these composites was observed, owing to their soft inner core and solid silica shell. We further demonstrate the use of solidified DNA frameworks to create 3D metal plasmonic devices. This protocol provides a platform for synthesizing inorganic materials with unprecedented complexity and tailored structural properties. The whole protocol takes ~10 d to complete.
软物质可以作为模板,指导具有良好控制结构特征的无机成分的生长。然而,传统有机和生物分子模板的有限设计空间限制了模板生长的复杂性和准确性。在过去的几十年中,结构 DNA 纳米技术的蓬勃发展为我们提供了大量精细结构的核酸,其设计精度可达单个碱基。在这里,我们描述了一种用于生成复杂二氧化硅复合材料纳米材料的 DNA 折纸硅化(DOS)方法。通过利用改良的二氧化硅溶胶-凝胶化学,预水解的二氧化硅前体簇可以均匀地涂覆在 DNA 框架的表面上;因此,可以实现具有~3nm 精度的用户定义的 DNA-二氧化硅杂化材料。更重要的是,该方法适用于从 10nm 到>1000nm 的各种 1D、2D 和 3D DNA 框架。与纯 DNA 支架相比,这些复合材料的杨氏模量(E 模量)增加了十倍,这是由于它们具有柔软的内部核心和坚固的二氧化硅外壳。我们进一步证明了使用固化的 DNA 框架来制造 3D 金属等离子体器件。该方案为合成具有前所未有的复杂性和定制结构特性的无机材料提供了一个平台。整个方案大约需要 10 天完成。