Suppr超能文献

开发和验证三种机器学习模型,用于预测中度和重度急性胰腺炎的多器官衰竭。

Development and validation of three machine-learning models for predicting multiple organ failure in moderately severe and severe acute pancreatitis.

机构信息

Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.

Department of Gastroenterology, People's Hospital of Chongqing Hechuan, Chongqing, 401520, China.

出版信息

BMC Gastroenterol. 2019 Jul 4;19(1):118. doi: 10.1186/s12876-019-1016-y.

Abstract

BACKGROUND

Multiple organ failure (MOF) is a serious complication of moderately severe (MASP) and severe acute pancreatitis (SAP). This study aimed to develop and assess three machine-learning models to predict MOF.

METHODS

Patients with MSAP and SAP who were admitted from July 2014 to June 2017 were included. Firstly, parameters with significant differences between patients with MOF and without MOF were screened out by univariate analysis. Then, support vector machine (SVM), logistic regression analysis (LRA) and artificial neural networks (ANN) models were constructed based on these factors, and five-fold cross-validation was used to train each model.

RESULTS

A total of 263 patients were enrolled. Univariate analysis screened out sixteen parameters referring to blood volume, inflammatory, coagulation and renal function to construct machine-learning models. The predictive efficiency of the optimal combinations of features by SVM, LRA, and ANN was almost equal (AUC = 0.840, 0.832, and 0.834, respectively), as well as the Acute Physiology and Chronic Health Evaluation II score (AUC = 0.814, P > 0.05). The common important predictive factors were HCT, K-time, IL-6 and creatinine in three models.

CONCLUSIONS

Three machine-learning models can be efficient prognostic tools for predicting MOF in MSAP and SAP. ANN is recommended, which only needs four common parameters.

摘要

背景

多器官功能衰竭(MOF)是中度重症(MASP)和重症急性胰腺炎(SAP)的严重并发症。本研究旨在开发和评估三种机器学习模型以预测 MOF。

方法

纳入 2014 年 7 月至 2017 年 6 月期间收治的 MASP 和 SAP 患者。首先,通过单因素分析筛选出 MOF 患者与非 MOF 患者之间存在显著差异的参数。然后,基于这些因素构建支持向量机(SVM)、逻辑回归分析(LRA)和人工神经网络(ANN)模型,并采用五重交叉验证对每个模型进行训练。

结果

共纳入 263 例患者。单因素分析筛选出 16 个与血容量、炎症、凝血和肾功能相关的参数,用于构建机器学习模型。SVM、LRA 和 ANN 最优特征组合的预测效率几乎相同(AUC=0.840、0.832 和 0.834,P>0.05),急性生理学和慢性健康评估 II 评分(AUC=0.814,P>0.05)。三个模型中共同的重要预测因素是 HCT、K-time、IL-6 和肌酐。

结论

三种机器学习模型可有效用于预测 MASP 和 SAP 中的 MOF。建议使用 ANN,它仅需要四个常见参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d0c/6611034/098e4c3a1c67/12876_2019_1016_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验