Suppr超能文献

基于深度学习的颈动脉内中膜超声图像分类。

Classification of Carotid Artery Intima Media Thickness Ultrasound Images with Deep Learning.

机构信息

Faculty of Technology, Computer Engineering Department Ph.D, Gazi University, Ankara, Turkey.

Faculty of Technology, Computer Engineering Department, Gazi University, Ankara, Turkey.

出版信息

J Med Syst. 2019 Jul 5;43(8):273. doi: 10.1007/s10916-019-1406-2.

Abstract

Cerebrovascular accident due to carotid artery disease is the most common cause of death in developed countries following heart disease and cancer. For a reliable early detection of atherosclerosis, Intima Media Thickness (IMT) measurement and classification are important. A new method for decision support purpose for the classification of IMT was proposed in this study. Ultrasound images are used for IMT measurements. Images are classified and evaluated by experts. This is a manual procedure, so it causes subjectivity and variability in the IMT classification. Instead, this article proposes a methodology based on artificial intelligence methods for IMT classification. For this purpose, a deep learning strategy with multiple hidden layers has been developed. In order to create the proposed model, convolutional neural network algorithm, which is frequently used in image classification problems, is used. 501 ultrasound images from 153 patients were used to test the model. The images are classified by two specialists, then the model is trained and tested on the images, and the results are explained. The deep learning model in the study achieved an accuracy of 89.1% in the IMT classification with 89% sensitivity and 88% specificity. Thus, the assessments in this paper have shown that this methodology performs reasonable results for IMT classification.

摘要

由于颈动脉疾病导致的脑血管意外是发达国家继心脏病和癌症之后的最常见死亡原因。为了可靠地早期发现动脉粥样硬化,内中膜厚度(IMT)测量和分类非常重要。本研究提出了一种新的用于分类目的的决策支持方法。使用超声图像进行 IMT 测量。图像由专家分类和评估。这是一个手动过程,因此在 IMT 分类中会导致主观性和可变性。相反,本文提出了一种基于人工智能方法的 IMT 分类方法。为此,开发了具有多个隐藏层的深度学习策略。为了创建所提出的模型,使用了卷积神经网络算法,该算法常用于图像分类问题。从 153 名患者中使用了 501 个超声图像来测试模型。由两位专家对图像进行分类,然后在图像上对模型进行训练和测试,并解释结果。研究中的深度学习模型在 IMT 分类中的准确率达到 89.1%,灵敏度为 89%,特异性为 88%。因此,本文的评估表明,这种方法在 IMT 分类方面取得了合理的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验