深度学习策略用于准确测量颈动脉内膜中层厚度:一项针对日本糖尿病队列的超声研究。
Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort.
机构信息
National Institute of Technology Goa, India.
Toho University Ohashi Medical Center, Tokyo, Japan.
出版信息
Comput Biol Med. 2018 Jul 1;98:100-117. doi: 10.1016/j.compbiomed.2018.05.014. Epub 2018 May 12.
MOTIVATION
The carotid intima-media thickness (cIMT) is an important biomarker for cardiovascular diseases and stroke monitoring. This study presents an intelligence-based, novel, robust, and clinically-strong strategy that uses a combination of deep-learning (DL) and machine-learning (ML) paradigms.
METHODOLOGY
A two-stage DL-based system (a class of AtheroEdge™ systems) was proposed for cIMT measurements. Stage I consisted of a convolution layer-based encoder for feature extraction and a fully convolutional network-based decoder for image segmentation. This stage generated the raw inner lumen borders and raw outer interadventitial borders. To smooth these borders, the DL system used a cascaded stage II that consisted of ML-based regression. The final outputs were the far wall lumen-intima (LI) and media-adventitia (MA) borders which were used for cIMT measurements. There were two sets of gold standards during the DL design, therefore two sets of DL systems (DL1 and DL2) were derived.
RESULTS
A total of 396 B-mode ultrasound images of the right and left common carotid artery were used from 203 patients (Institutional Review Board approved, Toho University, Japan). For the test set, the cIMT error for the DL1 and DL2 systems with respect to the gold standard was 0.126 ± 0.134 and 0.124 ± 0.100 mm, respectively. The corresponding LI error for the DL1 and DL2 systems was 0.077 ± 0.057 and 0.077 ± 0.049 mm, respectively, while the corresponding MA error for DL1 and DL2 was 0.113 ± 0.105 and 0.109 ± 0.088 mm, respectively. The results showed up to 20% improvement in cIMT readings for the DL system compared to the sonographer's readings. Four statistical tests were conducted to evaluate reliability, stability, and statistical significance.
CONCLUSION
The results showed that the performance of the DL-based approach was superior to the nonintelligence-based conventional methods that use spatial intensities alone. The DL system can be used for stroke risk assessment during routine or clinical trial modes.
动机
颈动脉内膜中层厚度 (cIMT) 是心血管疾病和中风监测的重要生物标志物。本研究提出了一种基于人工智能的新颖、强大且具有临床优势的策略,该策略结合了深度学习 (DL) 和机器学习 (ML) 范式。
方法
提出了一种基于两阶段 DL 的系统 (AtheroEdge™ 系统的一类) 用于 cIMT 测量。第一阶段包括基于卷积层的编码器进行特征提取和基于全卷积网络的解码器进行图像分割。该阶段生成原始内腔边界和原始外膜间边界。为了平滑这些边界,DL 系统使用基于 ML 的回归的级联第二阶段。最终输出是用于 cIMT 测量的远壁腔内膜 (LI) 和中膜外膜 (MA) 边界。在 DL 设计过程中有两组金标准,因此衍生出两组 DL 系统 (DL1 和 DL2)。
结果
从 203 名患者中使用了 396 张右侧和左侧颈总动脉的 B 型超声图像 (机构审查委员会批准,日本东京都立大学)。对于测试集,DL1 和 DL2 系统相对于金标准的 cIMT 误差分别为 0.126±0.134 和 0.124±0.100mm,相应的 LI 误差分别为 0.077±0.057 和 0.077±0.049mm,而相应的 MA 误差分别为 DL1 和 DL2 为 0.113±0.105 和 0.109±0.088mm。结果表明,与超声医师的读数相比,DL 系统的 cIMT 读数提高了 20%。进行了四项统计检验以评估可靠性、稳定性和统计学意义。
结论
结果表明,基于深度学习的方法的性能优于仅使用空间强度的非智能传统方法。该 DL 系统可用于常规或临床试验模式下的中风风险评估。