Suppr超能文献

任务性质影响内在连接网络:一项针对健康受试者的功能性磁共振成像探索性研究。

The Nature of the Task Influences Intrinsic Connectivity Networks: An Exploratory fMRI Study in Healthy Subjects.

作者信息

Jarrahi Behnaz, Mantini Dante

机构信息

Systems Neuroscience and Pain Lab, Stanford University School of Medicine.

Research Centre for Motor Control and Neuroplasticity, KU Leuven.

出版信息

Int IEEE EMBS Conf Neural Eng. 2019 Mar;2019:489-493. doi: 10.1109/NER.2019.8717082. Epub 2019 May 20.

Abstract

Task-induced variations in neural activity and their effects on the topological architecture of intrinsic connectivity networks (ICNs) of the brain are still a matter of ongoing research. In this exploratory study, we used spatial independent component analysis (ICA) as a data-driven technique to characterize ICNs related to two different tasks in healthy subjects who underwent 3T blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The fMRI tasks consisted of (a) a viscerosensory stimulation of an internal organ (interoceptive task), and (b) passive viewing of emotionally expressive faces and pictures from the International Affective Picture System (exteroceptive emotion task). Comparison of the network volumes and peak activations during each task condition demonstrated that changes in ICN volume and corresponding peak activation differed between the interoceptive and exteroceptive emotion tasks when compared to the baseline rest. Further, salience network was the most task-activated ICN for both fMRI task conditions. However, different spatial characteristics were observed between the salience networks derived from the interoceptive task and the one derived from the exteroceptive emotion task. This study is a step in the direction of better understanding the influence of task condition on ICN topology. Future research with a larger sample size and task variations should delve deeper into what aspects of network topology really matter, with further investigations regarding the observed differences due to gender and age.

摘要

任务诱发的神经活动变化及其对大脑内在连接网络(ICN)拓扑结构的影响仍是一个正在进行研究的课题。在这项探索性研究中,我们使用空间独立成分分析(ICA)作为一种数据驱动技术,来表征在接受3T血氧水平依赖(BOLD)功能磁共振成像(fMRI)的健康受试者中与两种不同任务相关的ICN。fMRI任务包括:(a)对一个内部器官进行内脏感觉刺激(内感受任务),以及(b)被动观看来自国际情感图片系统的情感表达面孔和图片(外感受情感任务)。对每个任务条件下的网络体积和峰值激活进行比较表明,与基线静息状态相比,内感受任务和外感受情感任务在ICN体积变化和相应的峰值激活方面存在差异。此外,突显网络是两种fMRI任务条件下激活程度最高的ICN。然而,从内感受任务得出的突显网络和从外感受情感任务得出的突显网络之间观察到了不同的空间特征。这项研究朝着更好地理解任务条件对ICN拓扑结构的影响迈出了一步。未来采用更大样本量和任务变化的研究应更深入地探究网络拓扑结构的哪些方面真正重要,并进一步研究因性别和年龄导致的观察到的差异。

相似文献

1
The Nature of the Task Influences Intrinsic Connectivity Networks: An Exploratory fMRI Study in Healthy Subjects.
Int IEEE EMBS Conf Neural Eng. 2019 Mar;2019:489-493. doi: 10.1109/NER.2019.8717082. Epub 2019 May 20.
2
Tracking intrinsic connectivity brain network features during successive (Pseudo-) resting states and interoceptive task fMRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5567-5570. doi: 10.1109/EMBC.2016.7591988.
3
Exploring influence of subliminal interoception on whole-brain functional network connectivity dynamics.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:670-4. doi: 10.1109/EMBC.2015.7318451.
4
Impact of Intravesical Cold Sensation on Functional Network Connectivity Estimated Using ICA at Rest & During Interoceptive Task.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1722-1725. doi: 10.1109/EMBC44109.2020.9176391.
5
Measuring the Influence of Physiological Noise Corrections on ICA Derived Intrinsic Connectivity Brain Networks in Rest and Task fMRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1046-1049. doi: 10.1109/EMBC.2018.8512391.
6
Salience network connectivity in the insula is associated with individual differences in interoceptive accuracy.
Brain Struct Funct. 2017 May;222(4):1635-1644. doi: 10.1007/s00429-016-1297-7. Epub 2016 Aug 29.
8
Identifying the effects of visceral interoception on human brain connectome: A multivariate analysis of covariance of fMRI data.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5558-5562. doi: 10.1109/EMBC.2016.7591986.
10
ADORA2A genotype modulates interoceptive and exteroceptive processing in a fronto-insular network.
Eur Neuropsychopharmacol. 2016 Aug;26(8):1274-85. doi: 10.1016/j.euroneuro.2016.05.007. Epub 2016 Jun 1.

引用本文的文献

1
Parcellation-based tractographic modeling of the salience network through meta-analysis.
Brain Behav. 2022 Jul;12(7):e2646. doi: 10.1002/brb3.2646. Epub 2022 Jun 22.

本文引用的文献

1
Tracking intrinsic connectivity brain network features during successive (Pseudo-) resting states and interoceptive task fMRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5567-5570. doi: 10.1109/EMBC.2016.7591988.
2
Behavioral interpretations of intrinsic connectivity networks.
J Cogn Neurosci. 2011 Dec;23(12):4022-37. doi: 10.1162/jocn_a_00077. Epub 2011 Jun 14.
3
A baseline for the multivariate comparison of resting-state networks.
Front Syst Neurosci. 2011 Feb 4;5:2. doi: 10.3389/fnsys.2011.00002. eCollection 2011.
4
Large-scale brain networks in cognition: emerging methods and principles.
Trends Cogn Sci. 2010 Jun;14(6):277-90. doi: 10.1016/j.tics.2010.04.004. Epub 2010 May 20.
5
The effect of model order selection in group PICA.
Hum Brain Mapp. 2010 Aug;31(8):1207-16. doi: 10.1002/hbm.20929.
6
Correspondence of the brain's functional architecture during activation and rest.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
7
Dissociable intrinsic connectivity networks for salience processing and executive control.
J Neurosci. 2007 Feb 28;27(9):2349-56. doi: 10.1523/JNEUROSCI.5587-06.2007.
8
Validating the independent components of neuroimaging time series via clustering and visualization.
Neuroimage. 2004 Jul;22(3):1214-22. doi: 10.1016/j.neuroimage.2004.03.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验