Section on Critical Brain Dynamics, Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892-9663, USA.
J Neurosci. 2011 Nov 30;31(48):17514-26. doi: 10.1523/JNEUROSCI.3127-11.2011.
In the cortex, the interactions among neurons give rise to transient coherent activity patterns that underlie perception, cognition, and action. Recently, it was actively debated whether the most basic interactions, i.e., the pairwise correlations between neurons or groups of neurons, suffice to explain those observed activity patterns. So far, the evidence reported is controversial. Importantly, the overall organization of neuronal interactions and the mechanisms underlying their generation, especially those of high-order interactions, have remained elusive. Here we show that higher-order interactions are required to properly account for cortical dynamics such as ongoing neuronal avalanches in the alert monkey and evoked visual responses in the anesthetized cat. A Gaussian interaction model that utilizes the observed pairwise correlations and event rates and that applies intrinsic thresholding identifies those higher-order interactions correctly, both in cortical local field potentials and spiking activities. This allows for accurate prediction of large neuronal population activities as required, e.g., in brain-machine interface paradigms. Our results demonstrate that higher-order interactions are inherent properties of cortical dynamics and suggest a simple solution to overcome the apparent formidable complexity previously thought to be intrinsic to those interactions.
在大脑皮层中,神经元之间的相互作用产生了短暂的相干活动模式,这些模式是感知、认知和行动的基础。最近,人们积极争论的是,最基本的相互作用,即神经元或神经元群之间的成对相关,是否足以解释那些观察到的活动模式。到目前为止,报告的证据是有争议的。重要的是,神经元相互作用的总体组织及其产生的机制,特别是高阶相互作用的机制,仍然难以捉摸。在这里,我们表明高阶相互作用是解释皮质动力学所必需的,例如在警觉猴子中的持续神经元瀑流和麻醉猫中的诱发视觉反应。一个利用观察到的成对相关性和事件率的高斯相互作用模型,并应用内在的阈值,可以正确地识别出这些高阶相互作用,无论是在皮质局部场电位还是在尖峰活动中。这允许准确地预测大的神经元群体活动,例如在脑机接口范式中。我们的结果表明,高阶相互作用是皮质动力学的固有特性,并为克服先前认为这些相互作用内在的明显复杂问题提供了一个简单的解决方案。