Suppr超能文献

动态因果建模在钙成像中的应用:对桶状皮层柱感觉处理的差异有效连接的探索。

Dynamic causal modeling for calcium imaging: Exploration of differential effective connectivity for sensory processing in a barrel cortical column.

机构信息

Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.

Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

Neuroimage. 2019 Nov 1;201:116008. doi: 10.1016/j.neuroimage.2019.116008. Epub 2019 Jul 10.

Abstract

Multi-photon calcium imaging (CaI) is an important tool to assess activities of neural populations within a column in the sensory cortex. However, the complex asymmetrical interactions among neural populations, termed effective connectivity, cannot be directly assessed by measuring the activity of each neuron or neural population using CaI but calls for computational modeling. To estimate effective connectivity among neural populations, we proposed a dynamic causal model (DCM) for CaI by combining a convolution-based dynamic neural state model and a dynamic calcium ion concentration model for CaI signals. After conducting a simulation study to evaluate DCM for CaI, we applied it to an experimental CaI signals measured at the layer 2/3 of a barrel cortical column that differentially responds to hit and error whisking trials in mice. We first identified neural populations and constructed computational models with intrinsic connectivity of neural populations within the layer 2/3 of the barrel cortex and extrinsic connectivity with latent external modes. Bayesian model inversion and comparison shows that interactions with latent inhibitory and excitatory external modes explain the observed CaI signals within the barrel cortical column better than any other tested models, with a single external mode or without any latent modes. The best model also showed differential intrinsic and extrinsic effective connectivity between hit and error trials in the functional hierarchy. Both simulation and experimental results suggest the usefulness of DCM for CaI in terms of exploration of hierarchical interactions among neural populations observed in CaI.

摘要

多光子钙成像(CaI)是评估感觉皮层柱内神经群体活动的重要工具。然而,通过使用 CaI 测量每个神经元或神经群体的活动,无法直接评估神经群体之间的复杂非对称相互作用,即有效连接,这需要计算建模。为了估计神经群体之间的有效连接,我们通过将基于卷积的动态神经状态模型和用于 CaI 信号的动态钙离子浓度模型相结合,提出了用于 CaI 的动态因果模型(DCM)。在对 CaI 的 DCM 进行模拟研究后,我们将其应用于在小鼠的敲击和错误扫动试验中具有不同反应的桶状皮层柱的 2/3 层测量的实验 CaI 信号。我们首先鉴定了神经群体,并构建了具有桶状皮层 2/3 层内神经群体的内在连接性以及与潜在外部模式的外在连接性的计算模型。贝叶斯模型反演和比较表明,与潜在抑制和兴奋外部模式的相互作用比任何其他测试模型都能更好地解释在桶状皮层柱内观察到的 CaI 信号,而具有单个外部模式或没有任何潜在模式的模型则不能。最佳模型还显示了在功能层次结构中敲击和错误试验之间的内在和外在有效连接的差异。模拟和实验结果均表明,DCM 对于 CaI 在探索 CaI 中观察到的神经群体之间的层次交互作用方面是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验