文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

复制性衰老的多种类型异质性。

The many types of heterogeneity in replicative senescence.

机构信息

CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Sorbonne Université, Paris, France.

CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratory of Molecular and Cell Biology of Eukaryotes, Sorbonne Université, PSL Research University, Paris, France.

出版信息

Yeast. 2019 Nov;36(11):637-648. doi: 10.1002/yea.3433. Epub 2019 Aug 6.


DOI:10.1002/yea.3433
PMID:31306505
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6900063/
Abstract

Replicative senescence, which is induced by telomere shortening, underlies the loss of regeneration capacity of organs and is ultimately detrimental to the organism. At the same time, it is required to protect organisms from unlimited cell proliferation that may arise from numerous stimuli or deregulations. One important feature of replicative senescence is its high level of heterogeneity and asynchrony, which promote genome instability and senescence escape. Characterizing this heterogeneity and investigating its sources are thus critical to understanding the robustness of replicative senescence. Here we review the different aspects of senescence driven by telomere attrition that are subject to variation in Saccharomyces cerevisiae, the current understanding of the molecular processes at play, and the consequences of heterogeneity in replicative senescence.

摘要

复制性衰老,由端粒缩短引起,是器官再生能力丧失的基础,最终对生物体有害。同时,它需要保护生物体免受可能由许多刺激或失调引起的无限细胞增殖的影响。复制性衰老的一个重要特征是其高度的异质性和不同步性,这促进了基因组不稳定性和衰老逃逸。因此,描述这种异质性并研究其来源对于理解复制性衰老的稳健性至关重要。在这里,我们回顾了酿酒酵母中端粒磨损驱动的衰老的不同方面,这些方面受到了变化的影响,讨论了当前发挥作用的分子过程的理解,以及复制性衰老中异质性的后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af13/6900063/72c9d101c25c/YEA-36-637-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af13/6900063/f38d667da12f/YEA-36-637-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af13/6900063/65a5c9104482/YEA-36-637-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af13/6900063/72c9d101c25c/YEA-36-637-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af13/6900063/f38d667da12f/YEA-36-637-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af13/6900063/65a5c9104482/YEA-36-637-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af13/6900063/72c9d101c25c/YEA-36-637-g003.jpg

相似文献

[1]
The many types of heterogeneity in replicative senescence.

Yeast. 2019-8-6

[2]
The asymmetry of telomere replication contributes to replicative senescence heterogeneity.

Sci Rep. 2015-10-15

[3]
Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability.

Genes Dev. 2018-11-21

[4]
The length of the shortest telomere as the major determinant of the onset of replicative senescence.

Genetics. 2013-6-3

[5]
Deletion of MEC1 suppresses the replicative senescence of the cdc13-2 mutant in Saccharomyces cerevisiae.

G3 (Bethesda). 2023-5-2

[6]
A subtelomeric region affects telomerase-negative replicative senescence in Saccharomyces cerevisiae.

Sci Rep. 2019-2-12

[7]
Reversible DNA damage checkpoint activation at the presenescent stage in telomerase-deficient cells of Saccharomyces cerevisiae.

Genes Cells. 2019-6-17

[8]
Quantitative assessment of changes in cell growth, size and morphology during telomere-initiated cellular senescence in Saccharomyces cerevisiae.

Exp Cell Res. 2019-5-7

[9]
Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae.

FEMS Yeast Res. 2016-11

[10]
Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae.

Cell Biosci. 2021-10-9

引用本文的文献

[1]
Mathematical model linking telomeres to senescence in Saccharomyces cerevisiae reveals cell lineage versus population dynamics.

Nat Commun. 2025-1-25

[2]
Hog1 acts in a Mec1-independent manner to counteract oxidative stress following telomerase inactivation in Saccharomyces cerevisiae.

Commun Biol. 2024-6-22

[3]
Regulation of proliferation and apoptosis of aging periodontal ligament cells by autophagy-related gene 7.

Mol Biol Rep. 2023-8

[4]
Trimethylamine N-oxide: role in cell senescence and age-related diseases.

Eur J Nutr. 2023-3

[5]
Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors.

Cell Stem Cell. 2022-1-6

[6]
N6-Methyladenosine Methylation of mRNA in Cell Senescence.

Cell Mol Neurobiol. 2023-1

[7]
Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae.

Cell Biosci. 2021-10-9

[8]
Telomere Replication: Solving Multiple End Replication Problems.

Front Cell Dev Biol. 2021-4-1

[9]
Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated .

Theranostics. 2021

[10]
Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control.

FEBS J. 2021-6

本文引用的文献

[1]
Checkpoint adaptation in recombination-deficient cells drives aneuploidy and resistance to genotoxic agents.

DNA Repair (Amst). 2020-11

[2]
Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss and Crisis.

Mol Cell. 2019-5-14

[3]
Adaptation in replicative senescence: a risky business.

Curr Genet. 2019-1-12

[4]
Homologous Recombination and the Formation of Complex Genomic Rearrangements.

Trends Cell Biol. 2018-11-26

[5]
Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability.

Genes Dev. 2018-11-21

[6]
Replicative aging as a source of cell heterogeneity in budding yeast.

Mech Ageing Dev. 2018-10-4

[7]
Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast.

Nature. 2018-8-1

[8]
Creating a functional single-chromosome yeast.

Nature. 2018-8-1

[9]
PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase.

Genes Dev. 2018-5-17

[10]
RNAi drives nonreciprocal translocations at eroding chromosome ends to establish telomere-free linear chromosomes.

Genes Dev. 2018-4-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索