Lehner Benjamin A E, Janssen Vera A E C, Spiesz Ewa M, Benz Dominik, Brouns Stan J J, Meyer Anne S, van der Zant Herre S J
Department of Bionanoscience Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands.
Department of Quantum Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft Netherlands.
ChemistryOpen. 2019 Jul 4;8(7):888-895. doi: 10.1002/open.201900186. eCollection 2019 Jul.
Graphene's maximized surface-to-volume ratio, high conductance, mechanical strength, and flexibility make it a promising nanomaterial. However, large-scale graphene production is typically cost-intensive. This manuscript describes a microbial reduction approach for producing graphene that utilizes the bacterium in combination with modern nanotechnology to enable a low-cost, large-scale production method. The bacterial reduction approach presented in this paper increases the conductance of single graphene oxide flakes as well as bulk graphene oxide sheets by 2.1 to 2.7 orders of magnitude respectively while simultaneously retaining a high surface-area-to-thickness ratio. -mediated reduction was employed in conjunction with electron-beam lithography to reduce one surface of individual graphene oxide flakes. This methodology yielded conducting flakes with differing functionalization on the top and bottom faces. Therefore, microbial reduction of graphene oxide enables the development and up-scaling of new types of graphene-based materials and devices with a variety of applications including nano-composites, conductive inks, and biosensors, while avoiding usage of hazardous, environmentally-unfriendly chemicals.
石墨烯的表面积与体积比最大化、高导电性、机械强度和柔韧性使其成为一种很有前景的纳米材料。然而,大规模生产石墨烯通常成本很高。本手稿描述了一种生产石墨烯的微生物还原方法,该方法利用细菌结合现代纳米技术,实现低成本、大规模的生产方法。本文提出的细菌还原方法分别将单个氧化石墨烯薄片和块状氧化石墨烯片的电导率提高了2.1至2.7个数量级,同时保持了高的表面积与厚度比。利用介导还原与电子束光刻相结合,来还原单个氧化石墨烯薄片的一个表面。这种方法产生了顶面和底面具有不同功能化的导电薄片。因此,氧化石墨烯的微生物还原能够开发和扩大新型石墨烯基材料和器件,其具有包括纳米复合材料、导电油墨和生物传感器在内的各种应用,同时避免使用有害的、对环境不友好的化学品。