Suppr超能文献

电子健康记录在院医疗患者目标性姑息治疗死亡率预测模型:一项试点类实验研究。

Electronic Health Record Mortality Prediction Model for Targeted Palliative Care Among Hospitalized Medical Patients: a Pilot Quasi-experimental Study.

机构信息

Department of Medicine at the Perelman School of Medicine, University of Pennsylvania, 303 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.

Palliative and Advanced Illness Research (PAIR) Center at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Gen Intern Med. 2019 Sep;34(9):1841-1847. doi: 10.1007/s11606-019-05169-2. Epub 2019 Jul 16.

Abstract

BACKGROUND

Development of electronic health record (EHR) prediction models to improve palliative care delivery is on the rise, yet the clinical impact of such models has not been evaluated.

OBJECTIVE

To assess the clinical impact of triggering palliative care using an EHR prediction model.

DESIGN

Pilot prospective before-after study on the general medical wards at an urban academic medical center.

PARTICIPANTS

Adults with a predicted probability of 6-month mortality of ≥ 0.3.

INTERVENTION

Triggered (with opt-out) palliative care consult on hospital day 2.

MAIN MEASURES

Frequencies of consults, advance care planning (ACP) documentation, home palliative care and hospice referrals, code status changes, and pre-consult length of stay (LOS).

KEY RESULTS

The control and intervention periods included 8 weeks each and 138 admissions and 134 admissions, respectively. Characteristics between the groups were similar, with a mean (standard deviation) risk of 6-month mortality of 0.5 (0.2). Seventy-seven (57%) triggered consults were accepted by the primary team and 8 consults were requested per usual care during the intervention period. Compared to historical controls, consultation increased by 74% (22 [16%] vs 85 [63%], P < .001), median (interquartile range) pre-consult LOS decreased by 1.4 days (2.6 [1.1, 6.2] vs 1.2 [0.8, 2.7], P = .02), ACP documentation increased by 38% (23 [17%] vs 37 [28%], P = .03), and home palliative care referrals increased by 61% (9 [7%] vs 23 [17%], P = .01). There were no differences between the control and intervention groups in hospice referrals (14 [10] vs 22 [16], P = .13), code status changes (42 [30] vs 39 [29]; P = .81), or consult requests for lower risk (< 0.3) patients (48/1004 [5] vs 33/798 [4]; P = .48).

CONCLUSIONS

Targeting hospital-based palliative care using an EHR mortality prediction model is a clinically promising approach to improve the quality of care among seriously ill medical patients. More evidence is needed to determine the generalizability of this approach and its impact on patient- and caregiver-reported outcomes.

摘要

背景

开发电子健康记录 (EHR) 预测模型以改善姑息治疗的提供正在兴起,但尚未评估此类模型的临床影响。

目的

评估使用 EHR 预测模型触发姑息治疗的临床影响。

设计

在城市学术医疗中心的普通医疗病房进行的试点前瞻性前后研究。

参与者

预计 6 个月死亡率≥0.3 的成年人。

干预措施

在入院第 2 天触发(可选择退出)姑息治疗咨询。

主要措施

咨询次数、预先护理计划 (ACP) 文档记录、家庭姑息治疗和临终关怀转介、代码状态更改以及预咨询住院时间 (LOS)。

主要结果

对照期和干预期各为 8 周,分别有 138 次和 134 次入院。组间特征相似,6 个月死亡率的平均(标准差)风险为 0.5(0.2)。77(57%)次触发的咨询被初级团队接受,在干预期间,每个常规护理周期请求 8 次咨询。与历史对照相比,咨询增加了 74%(22[16%] vs 85[63%],P<.001),中位数(四分位距)预咨询 LOS 减少了 1.4 天(2.6[1.1, 6.2] vs 1.2[0.8, 2.7],P=.02),ACP 文档记录增加了 38%(23[17%] vs 37[28%],P=.03),家庭姑息治疗转介增加了 61%(9[7%] vs 23[17%],P=.01)。对照组和干预组在临终关怀转介(14[10] vs 22[16],P=.13)、代码状态更改(42[30] vs 39[29];P=.81)或对低风险(<0.3)患者的咨询请求(48/1004[5] vs 33/798[4];P=.48)方面没有差异。

结论

使用 EHR 死亡率预测模型针对医院为基础的姑息治疗是一种有前途的改善重病患者护理质量的方法。需要更多的证据来确定这种方法的普遍性及其对患者和护理人员报告结果的影响。

相似文献

引用本文的文献

1
Measuring Goal-Concordant Care Using Electronic Clinical Notes.使用电子临床记录测量目标一致的护理
JAMA Netw Open. 2025 Jul 1;8(7):e2518967. doi: 10.1001/jamanetworkopen.2025.18967.
10
Applying Machine Learning Techniques to Implementation Science.将机器学习技术应用于实施科学。
Online J Public Health Inform. 2024 Apr 22;16:e50201. doi: 10.2196/50201.

本文引用的文献

1
Improving palliative care with deep learning.利用深度学习改善姑息治疗。
BMC Med Inform Decis Mak. 2018 Dec 12;18(Suppl 4):122. doi: 10.1186/s12911-018-0677-8.
2
Ensuring Fairness in Machine Learning to Advance Health Equity.确保机器学习的公正性,以促进健康公平。
Ann Intern Med. 2018 Dec 18;169(12):866-872. doi: 10.7326/M18-1990. Epub 2018 Dec 4.
8
Big Data and Machine Learning in Health Care.医疗保健中的大数据与机器学习
JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验