Papadakis Christine M, Müller-Buschbaum Peter, Laschewsky André
Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany.
Heinz Maier-Leibnitz Zentrum (MLZ) , Lichtenbergstraße 1 , 85748 Garching , Germany.
Langmuir. 2019 Jul 30;35(30):9660-9676. doi: 10.1021/acs.langmuir.9b01444. Epub 2019 Jul 17.
This feature article reviews our recent advancements on the synthesis, phase behavior, and micellar structures of diblock copolymers consisting of oppositely thermoresponsive blocks in aqueous environments. These copolymers combine a nonionic block, which shows lower critical solution temperature (LCST) behavior, with a zwitterionic block that exhibits an upper critical solution temperature (UCST). The transition temperature of the latter class of polymers is strongly controlled by its molar mass and by the salt concentration, in contrast to the rather invariant transition of nonionic polymers with type II LCST behavior such as poly(-isopropylacrylamide) or poly(-isopropyl methacrylamide). This allows for implementing the sequence of the UCST and LCST transitions of the polymers at will by adjusting either molecular or, alternatively, physical parameters. Depending on the location of the transition temperatures of both blocks, different switching scenarios are realized from micelles to inverse micelles, namely via the molecularly dissolved state, the aggregated state, or directly. In addition to studies of (semi)dilute aqueous solutions, highly concentrated systems have also been explored, namely water-swollen thin films. Concerning applications, we discuss the possible use of the diblock copolymers as "smart" nanocarriers.
这篇专题文章综述了我们近期在水性环境中由具有相反热响应性嵌段组成的二嵌段共聚物的合成、相行为和胶束结构方面取得的进展。这些共聚物将表现出较低临界溶液温度(LCST)行为的非离子嵌段与呈现较高临界溶液温度(UCST)的两性离子嵌段结合在一起。与具有II型LCST行为的非离子聚合物(如聚(N - 异丙基丙烯酰胺)或聚(N - 异丙基甲基丙烯酰胺))相对固定的转变温度不同,后一类聚合物的转变温度受其摩尔质量和盐浓度的强烈控制。这使得通过调节分子参数或物理参数,可以随意实现聚合物的UCST和LCST转变顺序。根据两个嵌段转变温度的位置,从胶束到反胶束实现了不同的转变情况,即通过分子溶解状态、聚集状态或直接转变。除了对(半)稀水溶液的研究外,还探索了高浓度体系,即水膨胀薄膜。关于应用,我们讨论了二嵌段共聚物作为“智能”纳米载体的可能用途。