Department of Physics and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, TX 77204, USA.
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Science. 2019 Aug 2;365(6452):495-498. doi: 10.1126/science.aax7792. Epub 2019 Jul 18.
Thermoelectric materials have a large Peltier effect, making them attractive for solid-state cooling applications. Bismuth telluride (BiTe)-based alloys have remained the state-of-the-art room-temperature materials for many decades. However, cost partially limited wider use of thermoelectric cooling devices because of the large amounts of expensive tellurium required. We report n-type magnesium bismuthide (MgBi)-based materials with a peak figure of merit () of ~0.9 at 350 kelvin, which is comparable to the commercial bismuth telluride selenide (BiTe Se ) but much cheaper. A cooling device made of our material and p-type bismuth antimony telluride (BiSbTe) has produced a large temperature difference of ~91 kelvin at the hot-side temperature of 350 kelvin. n-type MgBi-based materials are promising for thermoelectric cooling applications.
热电材料具有较大的珀耳帖效应,因此在固态冷却应用中很有吸引力。碲化铋 (BiTe) 基合金作为一种室温材料,在过去几十年中一直处于领先地位。然而,由于需要大量昂贵的碲,热电冷却设备的广泛应用受到了一定程度的限制。我们报告了 n 型镁铋化物 (MgBi) 基材料,其在 350 开尔文时的峰值品质因数 () 约为 0.9,与商业碲化铋硒 (BiTe Se ) 相当,但价格便宜得多。由我们的材料和 p 型铋锑碲化物 (BiSbTe) 制成的冷却装置,在 350 开尔文的热侧温度下产生了约 91 开尔文的大温差。n 型 MgBi 基材料有望在热电冷却应用中得到应用。