Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33146, United States.
Brain Res Bull. 2019 Oct;152:265-284. doi: 10.1016/j.brainresbull.2019.07.016. Epub 2019 Jul 16.
Electrical stimulation (ES) to manipulate the central (CNS) and peripheral nervous system (PNS) has been explored for decades, recently gaining momentum as bioelectronic medicine advances. The application of ES in vitro to modulate a variety of cellular functions, including regenerative potential, migration, and stem cell fate, are being explored to aid neural degeneration, dysfunction, and injury. This review describes the materials and approaches for the application of ES to the PNS and CNS microenvironments, towards an improved understanding of how ES can be harnessed for beneficial clinical applications. Emphasized are some recent advances in ES, including conductive polymers, methods of charge transfer, impact on neural cells, and a brief overview of alternative methodologies for cellular targeting including magneto, ultrasonic, and optogenetic stimulation. This review will examine how heterogenous cell populations, including neurons, glia, and neural stem cells respond to a wide range of conductive 2D and 3D substrates, stimulation regimes, known mechanisms of response, and how cellular sources impact the response to ES.
电刺激(ES)已被用于操纵中枢神经系统(CNS)和周围神经系统(PNS)数十年,最近随着生物电子医学的进步而得到了更多的关注。目前正在探索 ES 在体外应用于调节多种细胞功能,包括再生潜能、迁移和干细胞命运,以帮助神经退行性变、功能障碍和损伤。本综述描述了将 ES 应用于 PNS 和 CNS 微环境的材料和方法,以期更好地了解如何利用 ES 进行有益的临床应用。本文强调了 ES 的一些最新进展,包括导电聚合物、电荷转移方法、对神经细胞的影响,以及细胞靶向的替代方法的简要概述,包括磁刺激、超声刺激和光遗传学刺激。本综述将探讨包括神经元、神经胶质和神经干细胞在内的异质细胞群体如何对广泛的导电 2D 和 3D 基质、刺激方案、已知的反应机制以及细胞来源如何影响对 ES 的反应做出反应。