Laboratorio I+D de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay; Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas, Universidad de la República, Uruguay.
Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas, Universidad de la República, Uruguay.
Free Radic Biol Med. 2019 Sep;141:492-501. doi: 10.1016/j.freeradbiomed.2019.07.016. Epub 2019 Jul 16.
Peroxiredoxins (Prx) are enzymes that efficiently reduce hydroperoxides through active participation of cysteine residues (C, C). The first step in catalysis, the reduction of peroxide substrate, is fast, 10 - 10 Ms for human Prx2. In addition, the high intracellular concentration of Prx positions them not only as good antioxidants but also as central players in redox signaling pathways. These biological functions can be affected by post-translational modifications that could alter the peroxidase activity and/or interaction with other proteins. In particular, inactivation by hyperoxidation of C, which occurs when a second molecule of peroxide reacts with the C in the sulfenic acid form, modulates their participation in redox signaling pathways. The higher sensitivity to hyperoxidation of some Prx has been related to the presence of structural motifs that disfavor disulfide formation at the active site, making the C sulfenic acid more available for hyperoxidation or interaction with a redox protein target. We previously reported that treatment of human Prx2 with peroxynitrite results in tyrosine nitration, a post-translational modification on non-catalytic residues, yielding a more active peroxidase with higher resistance to hyperoxidation. In this work, studies on various mutants of hPrx2 confirm that the presence of the tyrosyl side-chain of Y193, belonging to the C-terminal YF motif of eukaryotic Prx, is necessary to observe the increase in Prx2 resistance to hyperoxidation. Moreover, our results underline the critical role of this structural motif on the rate of disulfide formation that determines the differential participation of Prx in redox signaling pathways.
过氧化物酶(Prx)是通过半胱氨酸残基(Cys)的积极参与来有效还原过氧化物的酶(Cys,C)。催化的第一步,即过氧化物底物的还原,速度很快,对于人 Prx2 来说是 10-10Ms。此外,Prx 在细胞内的高浓度不仅使它们成为良好的抗氧化剂,而且还是氧化还原信号通路中的核心参与者。这些生物学功能可以受到翻译后修饰的影响,这些修饰可以改变过氧化物酶的活性和/或与其他蛋白质的相互作用。特别是,Cys 的超氧化失活,当第二个过氧化物分子与半胱氨酸磺酸形式的 C 反应时会发生这种情况,会调节它们在氧化还原信号通路中的参与。一些 Prx 对超氧化的更高敏感性与存在不利于在活性位点形成二硫键的结构基序有关,这使得 C 半胱氨酸磺酸更容易发生超氧化或与氧化还原蛋白靶标相互作用。我们之前报道过,用过氧亚硝酸盐处理人 Prx2 会导致酪氨酸硝化,这是一种非催化残基的翻译后修饰,产生一种更活跃的过氧化物酶,对超氧化的抵抗力更高。在这项工作中,对各种 hPrx2 突变体的研究证实,属于真核 Prx C 末端 YF 基序的 Y193 酪氨酸侧链的存在对于观察 Prx2 对超氧化的抵抗力增加是必要的。此外,我们的结果强调了这个结构基序对二硫键形成速率的关键作用,这决定了 Prx 在氧化还原信号通路中的不同参与。