Suppr超能文献

一种基于扩展深度信念网络的新型深度学习化学过程故障诊断方法。

A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network.

作者信息

Wang Yalin, Pan Zhuofu, Yuan Xiaofeng, Yang Chunhua, Gui Weihua

机构信息

School of Automation, Central South University, Changsha, 410083, Hunan, PR China.

出版信息

ISA Trans. 2020 Jan;96:457-467. doi: 10.1016/j.isatra.2019.07.001. Epub 2019 Jul 8.

Abstract

Deep learning networks have been recently utilized for fault detection and diagnosis (FDD) due to its effectiveness in handling industrial process data, which are often with high nonlinearities and strong correlations. However, the valuable information in the raw data may be filtered with the layer-wise feature compression in traditional deep networks. This cannot benefit for the subsequent fine-tuning phase of fault classification. To alleviate this problem, an extended deep belief network (EDBN) is proposed to fully exploit useful information in the raw data, in which raw data is combined with the hidden features as inputs to each extended restricted Boltzmann machine (ERBM) during the pre-training phase. Then, a dynamic EDBN-based fault classifier is constructed to take the dynamic characteristics of process data into consideration. Finally, to test the performance of the proposed method, it is applied to the Tennessee Eastman (TE) process for fault classification. By comparing EDBN and DBN under different network structures, the results show that EDBN has better feature extraction and fault classification performance than traditional DBN.

摘要

深度学习网络因其在处理通常具有高度非线性和强相关性的工业过程数据方面的有效性,最近已被用于故障检测与诊断(FDD)。然而,原始数据中的有价值信息可能会在传统深度网络的逐层特征压缩过程中被过滤掉。这对后续故障分类的微调阶段没有好处。为了缓解这个问题,提出了一种扩展深度信念网络(EDBN),以充分利用原始数据中的有用信息,其中在预训练阶段,原始数据与隐藏特征相结合作为每个扩展受限玻尔兹曼机(ERBM)的输入。然后,构建一个基于动态EDBN的故障分类器,以考虑过程数据的动态特性。最后,为了测试所提方法的性能,将其应用于田纳西伊士曼(TE)过程进行故障分类。通过在不同网络结构下比较EDBN和DBN,结果表明EDBN比传统DBN具有更好的特征提取和故障分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验