Suppr超能文献

在分子动力学模拟中,微秒级强电场对微管蛋白的响应。

Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation.

机构信息

Rise Technology srl S. Martino di Lupari, Veneto, 35018, Italy.

Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.

出版信息

Sci Rep. 2019 Jul 19;9(1):10477. doi: 10.1038/s41598-019-46636-4.

Abstract

Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.

摘要

高强度脉冲电场作用于细胞膜水平,目前已应用于生物医学和生物技术领域。然而,目前尚不清楚在可达到的生物医学参数范围内的电脉冲是否可以直接影响细胞内成分,如细胞骨架蛋白。如果是这样,那么这种电场的治疗应用的作用机制可能会被揭示。为了帮助澄清这个问题,我们首先确定微管蛋白异二聚体是高强度电场的天然生物靶标,因为它具有特殊的电学性质,并且在细胞分裂中起着至关重要的作用。然后,我们使用分子动力学模拟表明,一个强烈的——但在实验上可达到的——纳秒持续时间的电场可以影响β-微管蛋白 C 末端构象,并影响 GTP 酶以及主要微管蛋白药物结合位点的局部静电特性。我们的研究结果表明,高强度纳秒电脉冲可用于物理调节微管动力学。由于纳秒脉冲电场由于其宽带谱可以穿透组织和细胞膜,因此我们的研究结果对于开发新的治疗方案也具有潜在的重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验