Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA.
Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
Adv Healthc Mater. 2019 Sep;8(17):e1900646. doi: 10.1002/adhm.201900646. Epub 2019 Jul 22.
The emergence of additive manufacturing has afforded the ability to fabricate intricate, high resolution, and patient-specific polymeric implants. However, the availability of biocompatible resins with tunable resorption profiles remains a significant hurdle to clinical translation. In this study, 3D scaffolds are fabricated via stereolithographic cDLP printing of poly(propylene fumarate) (PPF) and assessed for bone regeneration in a rat critical-sized cranial defect model. Scaffolds are printed with two different molecular mass resin formulations (1000 and 1900 Da) with narrow molecular mass distributions and implanted to determine if these polymer characteristics influence scaffold resorption and bone regeneration in vivo. X-ray microcomputed tomography (µ-CT) data reveal that at 4 weeks the lower molecular mass polymer degrades faster than the higher molecular mass PPF and thus more new bone is able to infiltrate the defect. However, at 12 weeks, the regenerated bone volume of the 1900 Da formulation is nearly equivalent to the lower molecular mass 1000 Da formulation. Significantly, lamellar bone bridges the defect at 12 weeks with both PPF formulations and there is no indication of an acute inflammatory response.
增材制造的出现使得制造复杂、高分辨率和个体化的聚合物植入物成为可能。然而,具有可调吸收特性的生物相容性树脂的可用性仍然是临床转化的一个重大障碍。在这项研究中,通过立体光刻 cDLP 打印聚(富马酸丙烯酯)(PPF)来制造 3D 支架,并在大鼠临界尺寸颅骨缺损模型中评估其用于骨再生的能力。使用两种不同分子量的树脂配方(1000 和 1900 Da)进行打印,分子量分布较窄,并进行了植入,以确定这些聚合物特性是否会影响体内支架的吸收和骨再生。X 射线微计算机断层扫描(µ-CT)数据显示,在 4 周时,低分子量聚合物的降解速度快于高分子量 PPF,因此更多的新骨能够渗透到缺损部位。然而,在 12 周时,1900 Da 配方的再生骨体积几乎与低分子量 1000 Da 配方相等。重要的是,两种 PPF 配方在 12 周时都有板层骨桥接缺损,没有急性炎症反应的迹象。