Suppr超能文献

基于深度学习和多目标跟踪的密集场环境中风致植物运动恢复。

Recovering Wind-Induced Plant Motion in Dense Field Environments via Deep Learning and Multiple Object Tracking.

机构信息

School of Computer Science, University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, United Kingdom

Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom.

出版信息

Plant Physiol. 2019 Sep;181(1):28-42. doi: 10.1104/pp.19.00141. Epub 2019 Jul 22.

Abstract

Understanding the relationships between local environmental conditions and plant structure and function is critical for both fundamental science and for improving the performance of crops in field settings. Wind-induced plant motion is important in most agricultural systems, yet the complexity of the field environment means that it remained understudied. Despite the ready availability of image sequences showing plant motion, the cultivation of crop plants in dense field stands makes it difficult to detect features and characterize their general movement traits. Here, we present a robust method for characterizing motion in field-grown wheat plants () from time-ordered sequences of red, green, and blue images. A series of crops and augmentations was applied to a dataset of 290 collected and annotated images of ear tips to increase variation and resolution when training a convolutional neural network. This approach enables wheat ears to be detected in the field without the need for camera calibration or a fixed imaging position. Videos of wheat plants moving in the wind were also collected and split into their component frames. Ear tips were detected using the trained network, then tracked between frames using a probabilistic tracking algorithm to approximate movement. These data can be used to characterize key movement traits, such as periodicity, and obtain more detailed static plant properties to assess plant structure and function in the field. Automated data extraction may be possible for informing lodging models, breeding programs, and linking movement properties to canopy light distributions and dynamic light fluctuation.

摘要

了解局部环境条件与植物结构和功能之间的关系,对于基础科学和提高田间作物性能都至关重要。风引起的植物运动在大多数农业系统中都很重要,但由于田间环境的复杂性,它仍然研究不足。尽管有现成的显示植物运动的图像序列,但由于密集田间种植的作物,难以检测特征并描述其一般运动特征。在这里,我们提出了一种从红、绿、蓝图像的时间顺序序列中描述田间生长的小麦植株运动的稳健方法。一系列作物和增强方法被应用于一组 290 张收集和注释的麦穗图像数据集,以增加卷积神经网络训练时的变异性和分辨率。这种方法使得无需相机校准或固定成像位置即可在田间检测到小麦穗。还收集了在风中移动的小麦植株的视频,并将其分为各个组成帧。使用训练好的网络检测麦穗,然后使用概率跟踪算法在帧间跟踪,以近似运动。这些数据可用于描述关键运动特征,如周期性,并获得更详细的静态植物特性,以评估田间的植物结构和功能。自动化数据提取可能用于为倒伏模型、育种计划提供信息,并将运动特性与冠层光分布和动态光波动联系起来。

相似文献

本文引用的文献

9
Using Deep Learning for Image-Based Plant Disease Detection.利用深度学习进行基于图像的植物病害检测。
Front Plant Sci. 2016 Sep 22;7:1419. doi: 10.3389/fpls.2016.01419. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验