Suppr超能文献

通过将未结合的核酸对接至环形蛋白质实现 XNA 连接酶的合理设计。

Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins.

机构信息

Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1041, 3000 Leuven, Belgium.

Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.

出版信息

Nucleic Acids Res. 2019 Jul 26;47(13):7130-7142. doi: 10.1093/nar/gkz551.

Abstract

Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.

摘要

外源性核酸 (XNA) 是自然界中不存在的核酸类似物,可用于存储遗传信息。体内 XNA 应用可以开发成新型的生物 containment 策略,但目前受到开发 XNA 聚合酶、连接酶和核酸酶等加工酶的挑战限制。在这里,我们提出了一种基于结构引导建模的策略,用于合理设计开发 XNA 分子生物学所必需的酶。将蛋白质结构域对接到未结合的双链核酸上,以生成核酸加工酶与其底物广泛相互作用的初步近似值。然后使用分子动力学对该预测进行优化,首次允许准确预测与核酸形成环形复合物的蛋白质如何与其底物相互作用。我们使用 Chlorella 病毒 DNA 连接酶作为原理证明,重现了连接酶的底物特异性,并成功预测了如何将其转化为 XNA 模板化 XNA 连接酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2655/6649754/0dad0e86a645/gkz551fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验