Suppr超能文献

基于反映组织代谢的血液生物标志物识别病理 RA 表型。两项 III 期 RA 研究的回顾性和探索性分析。

Identification of pathological RA endotypes using blood-based biomarkers reflecting tissue metabolism. A retrospective and explorative analysis of two phase III RA studies.

机构信息

ProScion, Herlev, Denmark.

University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark.

出版信息

PLoS One. 2019 Jul 24;14(7):e0219980. doi: 10.1371/journal.pone.0219980. eCollection 2019.

Abstract

There is an increasing demand for accurate endotyping of patients according to their pathogenesis to allow more targeted treatment. We explore a combination of blood-based joint tissue metabolites (neoepitopes) to enable patient clustering through distinct disease profiles. We analysed data from two RA studies (LITHE (N = 574, follow-up 24 and 52 weeks), OSKIRA-1 (N = 131, follow-up 24 weeks)). Two osteoarthritis (OA) studies (SMC01 (N = 447), SMC02 (N = 81)) were included as non-RA comparators. Specific tissue-derived neoepitopes measured at baseline, included: C2M (cartilage degradation); CTX-I and PINP (bone turnover); C1M and C3M (interstitial matrix degradation); CRPM (CRP metabolite) and VICM (macrophage activity). Clustering was performed to identify putative endotypes. We identified five clusters (A-E). Clusters A and B were characterized by generally higher levels of biomarkers than other clusters, except VICM which was significantly higher in cluster B than in cluster A (p<0.001). Biomarker levels in Cluster C were all close to the median, whilst Cluster D was characterised by low levels of all biomarkers. Cluster E also had low levels of most biomarkers, but with significantly higher levels of CTX-I compared to cluster D. There was a significant difference in ΔSHP score observed at 52 weeks (p<0.05). We describe putative RA endotypes based on biomarkers reflecting joint tissue metabolism. These endotypes differ in their underlining pathogenesis, and may in the future have utility for patient treatment selection.

摘要

目前,人们越来越需要根据发病机制对患者进行准确的表型分型,以实现更有针对性的治疗。我们探索了一种联合血液中关节组织代谢物(新表位)的方法,以便通过不同的疾病特征对患者进行聚类。我们分析了两项 RA 研究(LITHE(N=574,随访 24 和 52 周),OSKIRA-1(N=131,随访 24 周))的数据。两项骨关节炎(OA)研究(SMC01(N=447),SMC02(N=81))被纳入作为非 RA 对照组。在基线时测量了特定的组织衍生的新表位,包括:C2M(软骨降解);CTX-I 和 PINP(骨转换);C1M 和 C3M(间质基质降解);CRPM(CRP 代谢物)和 VICM(巨噬细胞活性)。通过聚类来识别可能的表型。我们确定了五个聚类(A-E)。聚类 A 和 B 的特点是大多数生物标志物水平普遍高于其他聚类,除了 VICM,它在聚类 B 中明显高于聚类 A(p<0.001)。聚类 C 的生物标志物水平都接近中位数,而聚类 D 的特点是所有生物标志物水平都较低。聚类 E 也具有大多数生物标志物水平较低的特点,但与聚类 D 相比,CTX-I 水平明显更高。在 52 周时观察到 SHP 评分的差异有统计学意义(p<0.05)。我们根据反映关节组织代谢的生物标志物描述了潜在的 RA 表型。这些表型在发病机制上存在差异,将来可能对患者的治疗选择具有实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe1c/6655687/1429749082d1/pone.0219980.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验