Suppr超能文献

视觉工作记忆中的“记忆压缩”效应取决于明确的长期记忆。

"Memory compression" effects in visual working memory are contingent on explicit long-term memory.

机构信息

Department of Psychology.

Department of Psychological and Brain Sciences.

出版信息

J Exp Psychol Gen. 2019 Aug;148(8):1373-1385. doi: 10.1037/xge0000649.

Abstract

Brady, Konkle, and Alvarez (2009) argued that statistical learning boosts the number of colors that can be held online in visual working memory (WM). They showed that when specific colors are consistently paired together in a WM task, subjects can take optimal advantage of these regularities to recall more colors, an effect they labeled memory compression. They proposed that memory compression is a product of visual statistical learning, an automatic apprehension of statistical regularities that has been shown in prior work to be disconnected from explicit learning. If statistical learning enables an expansion of the number of individuated representations in visual WM, it would require revision of virtually all models of capacity in this online memory system. That said, this provocative claim is inconsistent with multiple studies that have found no improvement in WM performance following numerous repetitions of specific sample displays (e.g., Logie, Brockmole, & Vandenbroucke, 2009; Olson & Jiang, 2004). Here, we replicate the Brady et al. (2009) findings but show that memory compression effects were restricted to subjects who had perfect explicit recall of the color pairs at the end of the study, suggesting that statistical regularities boosted performance by enabling contributions from long-term memory. Thus, while memory compression effects provide an interesting example of the tight collaboration between online and offline memory representations, they do not provide evidence that statistical regularities can augment the number of individuated representations that can be concurrently stored in visual WM. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

摘要

布雷迪、康克尔和阿尔瓦雷斯(2009 年)认为,统计学习可以增加视觉工作记忆(WM)中可在线存储的颜色数量。他们表明,当特定的颜色在 WM 任务中始终一致地配对时,受试者可以充分利用这些规律来回忆更多的颜色,他们将这种效果标记为记忆压缩。他们提出,记忆压缩是视觉统计学习的产物,这是一种对统计规律的自动理解,先前的研究表明,这种理解与显式学习无关。如果统计学习能够扩展视觉 WM 中个体表示的数量,那么几乎所有关于在线记忆系统容量的模型都需要修订。也就是说,这一有争议的说法与多项研究不一致,这些研究发现,在多次重复特定样本显示后,WM 性能没有提高(例如,Logie、Brockmole 和 Vandenbroucke,2009 年;Olson 和 Jiang,2004 年)。在这里,我们复制了布雷迪等人(2009 年)的发现,但表明记忆压缩效应仅限于在研究结束时对颜色对有完美明确记忆的受试者,这表明统计规律通过允许来自长期记忆的贡献来提高性能。因此,虽然记忆压缩效应为在线和离线记忆表示之间的紧密协作提供了一个有趣的例子,但它们并没有提供证据表明统计规律可以增加可以同时存储在视觉 WM 中的个体表示的数量。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。

相似文献

7
Feature binding in short-term memory and long-term learning.短期记忆和长期学习中的特征绑定
Q J Exp Psychol (Hove). 2019 Jun;72(6):1387-1400. doi: 10.1177/1747021818807718. Epub 2018 Oct 31.

引用本文的文献

6
Representation and computation in visual working memory.视觉工作记忆中的表示和计算。
Nat Hum Behav. 2024 Jun;8(6):1016-1034. doi: 10.1038/s41562-024-01871-2. Epub 2024 Jun 7.
10
Mapping visual working memory models to a theoretical framework.将视觉工作记忆模型映射到一个理论框架。
Psychon Bull Rev. 2024 Apr;31(2):442-459. doi: 10.3758/s13423-023-02356-5. Epub 2023 Aug 28.

本文引用的文献

1
How does chunking help working memory?组块如何帮助工作记忆?
J Exp Psychol Learn Mem Cogn. 2019 Jan;45(1):37-55. doi: 10.1037/xlm0000578. Epub 2018 Apr 26.
2
5
Neural Architecture for Feature Binding in Visual Working Memory.视觉工作记忆中特征绑定的神经架构。
J Neurosci. 2017 Apr 5;37(14):3913-3925. doi: 10.1523/JNEUROSCI.3493-16.2017. Epub 2017 Mar 7.
8
Guidance of spatial attention by incidental learning and endogenous cuing.空间注意的内隐学习和内源性线索引导。
J Exp Psychol Hum Percept Perform. 2013 Feb;39(1):285-97. doi: 10.1037/a0028022. Epub 2012 Apr 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验