Suppr超能文献

线粒体激素与代谢健康:ROS、cAMP 和 Sirtuins 之间的相互作用。

Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins.

机构信息

Department of Life Sciences, University of Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Portugal.

Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; IIIUC - Institute of Interdisciplinary Research, University of Coimbra, Portugal; Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.

出版信息

Free Radic Biol Med. 2019 Sep;141:483-491. doi: 10.1016/j.freeradbiomed.2019.07.017. Epub 2019 Jul 24.

Abstract

The key role of mitochondria in oxidative metabolism and redox homeostasis explains the link between mitochondrial dysfunction and the development of metabolic disorders. Mitochondria's highly dynamic nature, based on alterations in biogenesis, mitophagy, fusion and fission, allows adjusting sequential redox reactions of the electron transport chain (ETC) and dissipation of the membrane potential by ATP synthase, to different environmental cues. With reactive oxygen species being an inevitable by-product of oxidative phosphorylation (OXPHOS), alterations on mitochondrial oxidative rate with a consequent excessive load of reactive oxygen species have been traditionally associated with pathological conditions. However, reactive oxygen species have also been suggested as promoters of mitohormesis, a process in which low, non-cytotoxic concentrations of reactive oxygen species promote mitochondrial homeostasis. Therefore, signaling systems involved in the regulation of mitochondrial homeostasis are attractive candidates for drug development for metabolic diseases triggered by mitochondrial dysfunction. Reversible phosphorylation downstream the cyclic AMP (cAMP) signaling cascade and deacetylation mediated by sirtuins are recognized as major mitochondrial regulators.

摘要

线粒体在氧化代谢和氧化还原平衡中的关键作用解释了线粒体功能障碍与代谢紊乱发展之间的联系。线粒体的高度动态特性基于生物发生、线粒体自噬、融合和裂变的改变,允许调整电子传递链 (ETC) 的连续氧化还原反应和 ATP 合酶的膜电位耗散,以适应不同的环境信号。由于活性氧是氧化磷酸化 (OXPHOS) 的必然副产物,线粒体氧化率的改变以及随之而来的活性氧过量负荷一直与病理状况有关。然而,活性氧也被认为是线粒体应激的促进剂,即在低浓度、非细胞毒性的活性氧浓度下促进线粒体稳态的过程。因此,参与线粒体动态平衡调节的信号系统是由线粒体功能障碍引发的代谢疾病药物开发的有吸引力的候选物。环 AMP (cAMP) 信号级联下游的可逆磷酸化和由 sirtuins 介导的去乙酰化被认为是主要的线粒体调节剂。

相似文献

2
The Role of Sirtuins in Antioxidant and Redox Signaling.Sirtuins 在抗氧化和氧化还原信号中的作用。
Antioxid Redox Signal. 2018 Mar 10;28(8):643-661. doi: 10.1089/ars.2017.7290. Epub 2017 Oct 20.
3
Mitochondrial biogenesis: pharmacological approaches.线粒体生物合成:药理学方法。
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
6
Extranuclear Sirtuins and Metabolic Stress.核外 Sirtuins 与代谢应激
Antioxid Redox Signal. 2018 Mar 10;28(8):662-676. doi: 10.1089/ars.2017.7270. Epub 2017 Aug 11.
8
Shaping mitochondrial dynamics: The role of cAMP signalling.塑造线粒体动态:cAMP 信号的作用。
Biochem Biophys Res Commun. 2018 May 27;500(1):65-74. doi: 10.1016/j.bbrc.2017.05.041. Epub 2017 May 10.
9
The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis.SIRT3 介导的线粒体动态平衡在骨关节炎中的作用。
Cell Mol Life Sci. 2020 Oct;77(19):3729-3743. doi: 10.1007/s00018-020-03497-9. Epub 2020 May 28.

引用本文的文献

4
The role of SIRT3 in homeostasis and cellular health.SIRT3在体内平衡和细胞健康中的作用。
Front Cell Neurosci. 2024 Aug 2;18:1434459. doi: 10.3389/fncel.2024.1434459. eCollection 2024.

本文引用的文献

9
Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy.氧化还原信号紊乱加剧线粒体肌病。
Cell Metab. 2018 Nov 6;28(5):764-775.e5. doi: 10.1016/j.cmet.2018.07.012. Epub 2018 Aug 16.
10
Mechanisms Orchestrating Mitochondrial Dynamics for Energy Homeostasis.调控线粒体动态平衡的机制。
J Mol Biol. 2018 Oct 19;430(21):3922-3941. doi: 10.1016/j.jmb.2018.07.027. Epub 2018 Aug 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验