Suppr超能文献

线粒体激素与代谢健康:ROS、cAMP 和 Sirtuins 之间的相互作用。

Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins.

机构信息

Department of Life Sciences, University of Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Portugal.

Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; IIIUC - Institute of Interdisciplinary Research, University of Coimbra, Portugal; Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.

出版信息

Free Radic Biol Med. 2019 Sep;141:483-491. doi: 10.1016/j.freeradbiomed.2019.07.017. Epub 2019 Jul 24.

Abstract

The key role of mitochondria in oxidative metabolism and redox homeostasis explains the link between mitochondrial dysfunction and the development of metabolic disorders. Mitochondria's highly dynamic nature, based on alterations in biogenesis, mitophagy, fusion and fission, allows adjusting sequential redox reactions of the electron transport chain (ETC) and dissipation of the membrane potential by ATP synthase, to different environmental cues. With reactive oxygen species being an inevitable by-product of oxidative phosphorylation (OXPHOS), alterations on mitochondrial oxidative rate with a consequent excessive load of reactive oxygen species have been traditionally associated with pathological conditions. However, reactive oxygen species have also been suggested as promoters of mitohormesis, a process in which low, non-cytotoxic concentrations of reactive oxygen species promote mitochondrial homeostasis. Therefore, signaling systems involved in the regulation of mitochondrial homeostasis are attractive candidates for drug development for metabolic diseases triggered by mitochondrial dysfunction. Reversible phosphorylation downstream the cyclic AMP (cAMP) signaling cascade and deacetylation mediated by sirtuins are recognized as major mitochondrial regulators.

摘要

线粒体在氧化代谢和氧化还原平衡中的关键作用解释了线粒体功能障碍与代谢紊乱发展之间的联系。线粒体的高度动态特性基于生物发生、线粒体自噬、融合和裂变的改变,允许调整电子传递链 (ETC) 的连续氧化还原反应和 ATP 合酶的膜电位耗散,以适应不同的环境信号。由于活性氧是氧化磷酸化 (OXPHOS) 的必然副产物,线粒体氧化率的改变以及随之而来的活性氧过量负荷一直与病理状况有关。然而,活性氧也被认为是线粒体应激的促进剂,即在低浓度、非细胞毒性的活性氧浓度下促进线粒体稳态的过程。因此,参与线粒体动态平衡调节的信号系统是由线粒体功能障碍引发的代谢疾病药物开发的有吸引力的候选物。环 AMP (cAMP) 信号级联下游的可逆磷酸化和由 sirtuins 介导的去乙酰化被认为是主要的线粒体调节剂。

相似文献

1
Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins.
Free Radic Biol Med. 2019 Sep;141:483-491. doi: 10.1016/j.freeradbiomed.2019.07.017. Epub 2019 Jul 24.
2
The Role of Sirtuins in Antioxidant and Redox Signaling.
Antioxid Redox Signal. 2018 Mar 10;28(8):643-661. doi: 10.1089/ars.2017.7290. Epub 2017 Oct 20.
3
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
4
The Role of Reactive Oxygen Species in the Life Cycle of the Mitochondrion.
Int J Mol Sci. 2020 Mar 21;21(6):2173. doi: 10.3390/ijms21062173.
5
SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy.
Aging (Albany NY). 2017 Oct 29;9(10):2163-2189. doi: 10.18632/aging.101307.
6
Extranuclear Sirtuins and Metabolic Stress.
Antioxid Redox Signal. 2018 Mar 10;28(8):662-676. doi: 10.1089/ars.2017.7270. Epub 2017 Aug 11.
7
Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation.
Cell Metab. 2009 Mar;9(3):265-76. doi: 10.1016/j.cmet.2009.01.012.
8
Shaping mitochondrial dynamics: The role of cAMP signalling.
Biochem Biophys Res Commun. 2018 May 27;500(1):65-74. doi: 10.1016/j.bbrc.2017.05.041. Epub 2017 May 10.
9
The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis.
Cell Mol Life Sci. 2020 Oct;77(19):3729-3743. doi: 10.1007/s00018-020-03497-9. Epub 2020 May 28.
10
Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases.
Biomolecules. 2021 Aug 3;11(8):1144. doi: 10.3390/biom11081144.

引用本文的文献

2
Interrelation of Natural Polyphenol and Fibrosis in Diabetic Nephropathy.
Molecules. 2024 Dec 25;30(1):20. doi: 10.3390/molecules30010020.
3
The mechanism of PDE7B inhibiting the development of hepatocellular carcinoma through oxidative stress.
Front Immunol. 2024 Nov 21;15:1469740. doi: 10.3389/fimmu.2024.1469740. eCollection 2024.
4
The role of SIRT3 in homeostasis and cellular health.
Front Cell Neurosci. 2024 Aug 2;18:1434459. doi: 10.3389/fncel.2024.1434459. eCollection 2024.
7
Antioxidant effects of LEDT in dystrophic muscle cells: involvement of PGC-1α and UCP-3 pathways.
Photochem Photobiol Sci. 2024 Jan;23(1):107-118. doi: 10.1007/s43630-023-00506-1. Epub 2023 Dec 6.
8
The use of hyperbaric oxygen for veterans with PTSD: basic physiology and current available clinical data.
Front Neurosci. 2023 Oct 25;17:1259473. doi: 10.3389/fnins.2023.1259473. eCollection 2023.
9
High-fat stimulation induces atrial neural remodeling by reducing NO production via the CRIF1/eNOS/P21 axi.
Lipids Health Dis. 2023 Nov 6;22(1):189. doi: 10.1186/s12944-023-01952-7.

本文引用的文献

1
Novel role of the SIRT4-OPA1 axis in mitochondrial quality control.
Cell Stress. 2017 Dec 23;2(1):1-3. doi: 10.15698/cst2018.01.118.
2
SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress.
PLoS One. 2019 Feb 13;14(2):e0211796. doi: 10.1371/journal.pone.0211796. eCollection 2019.
3
Sirt6 Suppresses High Glucose-Induced Mitochondrial Dysfunction and Apoptosis in Podocytes through AMPK Activation.
Int J Biol Sci. 2019 Jan 24;15(3):701-713. doi: 10.7150/ijbs.29323. eCollection 2019.
4
Arginine methylation of SIRT7 couples glucose sensing with mitochondria biogenesis.
EMBO Rep. 2018 Dec;19(12). doi: 10.15252/embr.201846377. Epub 2018 Nov 12.
5
The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases.
J Mol Endocrinol. 2018 Oct 1;61(3):R91-R105. doi: 10.1530/JME-18-0005.
6
p53 cooperates with SIRT6 to regulate cardiolipin de novo biosynthesis.
Cell Death Dis. 2018 Sep 20;9(10):941. doi: 10.1038/s41419-018-0984-0.
7
Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes?
Biogerontology. 2018 Dec;19(6):461-480. doi: 10.1007/s10522-018-9768-2. Epub 2018 Aug 24.
8
Mitohormesis in Mice via Sustained Basal Activation of Mitochondrial and Antioxidant Signaling.
Cell Metab. 2018 Nov 6;28(5):776-786.e5. doi: 10.1016/j.cmet.2018.07.011. Epub 2018 Aug 16.
9
Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy.
Cell Metab. 2018 Nov 6;28(5):764-775.e5. doi: 10.1016/j.cmet.2018.07.012. Epub 2018 Aug 16.
10
Mechanisms Orchestrating Mitochondrial Dynamics for Energy Homeostasis.
J Mol Biol. 2018 Oct 19;430(21):3922-3941. doi: 10.1016/j.jmb.2018.07.027. Epub 2018 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验