Bug Daniel, Feuerhake Friedrich, Oswald Eva, Schüler Julia, Merhof Dorit
Institute of Imaging and Computer Vision, RWTH-Aachen University, D-52074 Aachen, Germany.
Institute for Pathology, Hannover Medical School, D-30625 Hannover, Germany.
Oncotarget. 2019 Jul 16;10(44):4587-4597. doi: 10.18632/oncotarget.27069.
We propose a deep learning workflow for the classification of hematoxylin and eosin stained histological whole-slide images of non-small-cell lung cancer. The workflow includes automatic extraction of meta-features for the characterization of the tumor. We show that the tissue-classification produces state-of-the-art results with an average F1-score of 83%. Manual supervision indicates that experts, in practice, accept a far higher percentage of predictions. Furthermore, the extracted meta-features are validated via visualization revealing relevant biomedical relations between the different tissue classes. In a hypothetical decision-support scenario, these meta-features can be used to discriminate the tumor response with regard to available treatment options with an estimated accuracy of 84%. This workflow supports large-scale analysis of tissue obtained in preclinical animal experiments, enables reproducible quantification of tissue classes and immune system markers, and paves the way towards discovery of novel features predicting response in translational immune-oncology research.
我们提出了一种深度学习工作流程,用于对非小细胞肺癌苏木精和伊红染色的组织学全切片图像进行分类。该工作流程包括自动提取用于表征肿瘤的元特征。我们表明,组织分类产生了先进的结果,平均F1分数为83%。人工监督表明,在实践中,专家接受的预测百分比要高得多。此外,通过可视化验证了提取的元特征,揭示了不同组织类别之间的相关生物医学关系。在一个假设的决策支持场景中,这些元特征可用于区分肿瘤对可用治疗方案的反应,估计准确率为84%。此工作流程支持对临床前动物实验中获得的组织进行大规模分析,能够对组织类别和免疫系统标记物进行可重复的量化,并为在转化免疫肿瘤学研究中发现预测反应的新特征铺平了道路。