Guo Yukun, Hormel Tristan T, Xiong Honglian, Wang Bingjie, Camino Acner, Wang Jie, Huang David, Hwang Thomas S, Jia Yali
Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
These authors contributed equally.
Biomed Opt Express. 2019 Jun 12;10(7):3257-3268. doi: 10.1364/BOE.10.003257. eCollection 2019 Jul 1.
The capillary nonperfusion area (NPA) is a key quantifiable biomarker in the evaluation of diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA). However, signal reduction artifacts caused by vitreous floaters, pupil vignetting, or defocus present significant obstacles to accurate quantification. We have developed a convolutional neural network, MEDnet-V2, to distinguish NPA from signal reduction artifacts in 6×6 mm OCTA. The network achieves strong specificity and sensitivity for NPA detection across a wide range of DR severity and scan quality.
毛细血管无灌注区(NPA)是使用光学相干断层扫描血管造影(OCTA)评估糖尿病视网膜病变(DR)时的一个关键可量化生物标志物。然而,由玻璃体混浊、瞳孔渐晕或散焦引起的信号降低伪影对准确量化构成了重大障碍。我们开发了一种卷积神经网络MEDnet-V2,用于在6×6 mm的OCTA中区分NPA和信号降低伪影。该网络在广泛的DR严重程度和扫描质量范围内,对NPA检测具有很强的特异性和敏感性。