Suppr超能文献

在光学相干断层扫描血管造影中使用卷积神经网络对三个视网膜神经丛进行稳健的无灌注区检测。

Robust non-perfusion area detection in three retinal plexuses using convolutional neural network in OCT angiography.

作者信息

Wang Jie, Hormel Tristan T, You Qisheng, Guo Yukun, Wang Xiaogang, Chen Liu, Hwang Thomas S, Jia Yali

机构信息

Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.

Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.

出版信息

Biomed Opt Express. 2019 Dec 18;11(1):330-345. doi: 10.1364/BOE.11.000330. eCollection 2020 Jan 1.

Abstract

Non-perfusion area (NPA) is a quantitative biomarker useful for characterizing ischemia in diabetic retinopathy (DR). Projection-resolved optical coherence tomographic angiography (PR-OCTA) allows visualization of retinal capillaries and quantify NPA in individual plexuses. However, poor scan quality can make current NPA detection algorithms unreliable and inaccurate. In this work, we present a robust NPA detection algorithm using convolutional neural network (CNN). By merging information from OCT angiograms and OCT reflectance images, the CNN could exclude signal reduction and motion artifacts and detect the avascular features from local to global with the resolution preserved. Across a wide range of signal strength indices, and on both healthy and DR eyes, the algorithm achieved high accuracy and repeatability.

摘要

无灌注区(NPA)是一种用于表征糖尿病视网膜病变(DR)缺血情况的定量生物标志物。投影分辨光学相干断层扫描血管造影(PR-OCTA)能够可视化视网膜毛细血管并量化各个神经纤维层中的NPA。然而,扫描质量不佳会使当前的NPA检测算法不可靠且不准确。在这项研究中,我们提出了一种使用卷积神经网络(CNN)的稳健NPA检测算法。通过融合来自OCT血管造影和OCT反射图像的信息,CNN可以排除信号衰减和运动伪影,并在保留分辨率的情况下从局部到全局检测无血管特征。在广泛的信号强度指数范围内,以及在健康眼睛和DR眼睛上,该算法都实现了高精度和可重复性。

相似文献

1
Robust non-perfusion area detection in three retinal plexuses using convolutional neural network in OCT angiography.
Biomed Opt Express. 2019 Dec 18;11(1):330-345. doi: 10.1364/BOE.11.000330. eCollection 2020 Jan 1.
3
Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma.
Ophthalmology. 2017 Nov;124(11):1589-1599. doi: 10.1016/j.ophtha.2017.06.002. Epub 2017 Jul 1.
4
Development and validation of a deep learning algorithm for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography.
Biomed Opt Express. 2019 Jun 12;10(7):3257-3268. doi: 10.1364/BOE.10.003257. eCollection 2019 Jul 1.
5
Reflectance-based projection-resolved optical coherence tomography angiography [Invited].
Biomed Opt Express. 2017 Feb 15;8(3):1536-1548. doi: 10.1364/BOE.8.001536. eCollection 2017 Mar 1.
6
MEDnet, a neural network for automated detection of avascular area in OCT angiography.
Biomed Opt Express. 2018 Oct 2;9(11):5147-5158. doi: 10.1364/BOE.9.005147. eCollection 2018 Nov 1.
7
Automated registration and enhanced processing of clinical optical coherence tomography angiography.
Quant Imaging Med Surg. 2016 Aug;6(4):391-401. doi: 10.21037/qims.2016.07.02.
8
Projection-Resolved Optical Coherence Tomographic Angiography of Retinal Plexuses in Retinitis Pigmentosa.
Am J Ophthalmol. 2019 Aug;204:70-79. doi: 10.1016/j.ajo.2019.02.034. Epub 2019 Mar 6.
10
Projection-resolved optical coherence tomographic angiography.
Biomed Opt Express. 2016 Feb 9;7(3):816-28. doi: 10.1364/BOE.7.000816. eCollection 2016 Mar 1.

引用本文的文献

3
Nonperfused Retinal Capillaries-A New Method Developed on OCT and OCTA.
Invest Ophthalmol Vis Sci. 2025 Apr 1;66(4):22. doi: 10.1167/iovs.66.4.22.
5
Advances in OCT Angiography.
Transl Vis Sci Technol. 2025 Mar 3;14(3):6. doi: 10.1167/tvst.14.3.6.
6
Quantitative Volumetric Analysis of Retinal Ischemia with an Oxygen Diffusion Model and OCT Angiography.
Ophthalmol Sci. 2024 Jul 19;4(6):100579. doi: 10.1016/j.xops.2024.100579. eCollection 2024 Nov-Dec.
8
DRAC 2022: A public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images.
Patterns (N Y). 2024 Feb 8;5(3):100929. doi: 10.1016/j.patter.2024.100929. eCollection 2024 Mar 8.
10
OCT angiography and its retinal biomarkers [Invited].
Biomed Opt Express. 2023 Aug 10;14(9):4542-4566. doi: 10.1364/BOE.495627. eCollection 2023 Sep 1.

本文引用的文献

1
Development and validation of a deep learning algorithm for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography.
Biomed Opt Express. 2019 Jun 12;10(7):3257-3268. doi: 10.1364/BOE.10.003257. eCollection 2019 Jul 1.
2
Signal Strength Reduction Effects in OCT Angiography.
Ophthalmol Retina. 2019 Oct;3(10):835-842. doi: 10.1016/j.oret.2019.04.029. Epub 2019 May 8.
4
Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography.
Biomed Opt Express. 2018 Aug 24;9(9):4429-4442. doi: 10.1364/BOE.9.004429. eCollection 2018 Sep 1.
6
MEDnet, a neural network for automated detection of avascular area in OCT angiography.
Biomed Opt Express. 2018 Oct 2;9(11):5147-5158. doi: 10.1364/BOE.9.005147. eCollection 2018 Nov 1.
7
Visualizing Structure and Vascular Interactions: Macular Nonperfusion in Three Capillary Plexuses.
Ophthalmic Surg Lasers Imaging Retina. 2018 Nov 1;49(11):e182-e190. doi: 10.3928/23258160-20181101-16.
8
Plexus-Specific Detection of Retinal Vascular Pathologic Conditions with Projection-Resolved OCT Angiography.
Ophthalmol Retina. 2018 Aug;2(8):816-826. doi: 10.1016/j.oret.2017.11.010. Epub 2018 Jan 10.
10
Importance of Considering the Middle Capillary Plexus on OCT Angiography in Diabetic Retinopathy.
Invest Ophthalmol Vis Sci. 2018 Apr 1;59(5):2167-2176. doi: 10.1167/iovs.17-23304.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验