Suppr超能文献

大数据流行病学中的抽样与抽样框

Sampling and Sampling Frames in Big Data Epidemiology.

作者信息

Mooney Stephen J, Garber Michael D

机构信息

Department of Epidemiology, University of Washington, Seattle, WA.

Harborview Injury Prevention & Research Center, University of Washington, Seattle, WA.

出版信息

Curr Epidemiol Rep. 2019 Mar;6(1):14-22. doi: 10.1007/s40471-019-0179-y. Epub 2019 Feb 2.

Abstract

PURPOSE OF REVIEW

The 'big data' revolution affords the opportunity to reuse administrative datasets for public health research. While such datasets offer dramatically increased statistical power compared with conventional primary data collection, typically at much lower cost, their use also raises substantial inferential challenges. In particular, it can be difficult to make population inferences because the sampling frames for many administrative datasets are undefined. We reviewed options for accounting for sampling in big data epidemiology.

RECENT FINDINGS

We identified three common strategies for accounting for sampling when the data available were not collected from a deliberately constructed sample: 1) explicitly reconstruct the sampling frame, 2) test the potential impacts of sampling using sensitivity analyses, and 3) limit inference to sample.

SUMMARY

Inference from big data can be challenging because the impacts of sampling are unclear. Attention to sampling frames can minimize risks of bias.

摘要

综述目的

“大数据”革命为公共卫生研究重新利用行政数据集提供了机会。虽然与传统的原始数据收集相比,此类数据集的统计能力显著提高,且成本通常低得多,但其使用也带来了重大的推理挑战。特别是,由于许多行政数据集的抽样框架不明确,因此很难进行总体推断。我们回顾了大数据流行病学中考虑抽样的方法。

最新发现

当可用数据并非从特意构建的样本中收集时,我们确定了三种考虑抽样的常见策略:1)明确重建抽样框架;2)使用敏感性分析测试抽样的潜在影响;3)将推断限制在样本范围内。

总结

由于抽样的影响尚不清楚,从大数据进行推断可能具有挑战性。关注抽样框架可以将偏差风险降至最低。

相似文献

1
Sampling and Sampling Frames in Big Data Epidemiology.大数据流行病学中的抽样与抽样框
Curr Epidemiol Rep. 2019 Mar;6(1):14-22. doi: 10.1007/s40471-019-0179-y. Epub 2019 Feb 2.
3
'Big data' in mental health research: current status and emerging possibilities.心理健康研究中的“大数据”:现状与新机遇
Soc Psychiatry Psychiatr Epidemiol. 2016 Aug;51(8):1055-72. doi: 10.1007/s00127-016-1266-8. Epub 2016 Jul 27.
5
Ethics, big data and computing in epidemiology and public health.流行病学与公共卫生领域的伦理、大数据与计算
Ann Epidemiol. 2017 May;27(5):297-301. doi: 10.1016/j.annepidem.2017.05.002. Epub 2017 May 10.

引用本文的文献

7

本文引用的文献

4
Big Data in Public Health: Terminology, Machine Learning, and Privacy.大数据在公共卫生中的应用:术语、机器学习和隐私
Annu Rev Public Health. 2018 Apr 1;39:95-112. doi: 10.1146/annurev-publhealth-040617-014208. Epub 2017 Dec 20.
5
Sensitivity Analysis in Observational Research: Introducing the E-Value.观察性研究中的敏感性分析:引入 E 值。
Ann Intern Med. 2017 Aug 15;167(4):268-274. doi: 10.7326/M16-2607. Epub 2017 Jul 11.
8
Generalizing Study Results: A Potential Outcomes Perspective.推广研究结果:潜在结果视角
Epidemiology. 2017 Jul;28(4):553-561. doi: 10.1097/EDE.0000000000000664.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验