Mooney Stephen J, Garber Michael D
Department of Epidemiology, University of Washington, Seattle, WA.
Harborview Injury Prevention & Research Center, University of Washington, Seattle, WA.
Curr Epidemiol Rep. 2019 Mar;6(1):14-22. doi: 10.1007/s40471-019-0179-y. Epub 2019 Feb 2.
The 'big data' revolution affords the opportunity to reuse administrative datasets for public health research. While such datasets offer dramatically increased statistical power compared with conventional primary data collection, typically at much lower cost, their use also raises substantial inferential challenges. In particular, it can be difficult to make population inferences because the sampling frames for many administrative datasets are undefined. We reviewed options for accounting for sampling in big data epidemiology.
We identified three common strategies for accounting for sampling when the data available were not collected from a deliberately constructed sample: 1) explicitly reconstruct the sampling frame, 2) test the potential impacts of sampling using sensitivity analyses, and 3) limit inference to sample.
Inference from big data can be challenging because the impacts of sampling are unclear. Attention to sampling frames can minimize risks of bias.
“大数据”革命为公共卫生研究重新利用行政数据集提供了机会。虽然与传统的原始数据收集相比,此类数据集的统计能力显著提高,且成本通常低得多,但其使用也带来了重大的推理挑战。特别是,由于许多行政数据集的抽样框架不明确,因此很难进行总体推断。我们回顾了大数据流行病学中考虑抽样的方法。
当可用数据并非从特意构建的样本中收集时,我们确定了三种考虑抽样的常见策略:1)明确重建抽样框架;2)使用敏感性分析测试抽样的潜在影响;3)将推断限制在样本范围内。
由于抽样的影响尚不清楚,从大数据进行推断可能具有挑战性。关注抽样框架可以将偏差风险降至最低。