Smits Janis, Damron Joshua T, Kehayias Pauli, McDowell Andrew F, Mosavian Nazanin, Fescenko Ilja, Ristoff Nathaniel, Laraoui Abdelghani, Jarmola Andrey, Acosta Victor M
Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA.
Laser Center of the University of Latvia, Riga, LV-1586, Latvia.
Sci Adv. 2019 Jul 26;5(7):eaaw7895. doi: 10.1126/sciadv.aaw7895. eCollection 2019 Jul.
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micrometer-scale detection volume and noninductive-based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 ± 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ∼40-picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a major step toward applications in mass-limited chemical analysis and single-cell biology.
基于金刚石中氮空位中心的量子传感器,因其微米级的检测体积和基于非感应的检测方式,已成为核磁共振(NMR)光谱学中一种很有前景的检测手段。一个尚存的挑战是,对于皮升量级样品体积的多维核磁共振分析,要实现足够高的光谱分辨率和浓度灵敏度。在此,我们通过在微流控平台上对实验的极化和检测阶段进行空间分离来应对这一挑战。我们实现了0.65±0.05赫兹的光谱分辨率,比之前的金刚石核磁共振研究提高了一个数量级。我们利用该平台在有效约40皮升的检测体积内对液体分析物进行二维相关光谱分析。将金刚石量子传感器用作在线微流控核磁共振探测器,是迈向质量受限化学分析和单细胞生物学应用的重要一步。