Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.
Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , China.
Inorg Chem. 2019 Oct 21;58(20):13696-13708. doi: 10.1021/acs.inorgchem.9b01280. Epub 2019 Jul 31.
Many different metal ions are involved in various biological functions including metallomics and trafficking, and yet there are currently effective sensors for only a few metal ions, despite the first report of metal sensors for calcium more than 40 years ago. To expand upon the number of metal ions that can be probed in biological systems, we and other laboratories employ the in vitro selection method to obtain metal-specific DNAzymes with high specificity for a metal ion and then convert these DNAzymes into fluorescent sensors for these metal ions using a catalytic beacon approach. In this Forum Article, we summarize recent progress made in developing these DNAzyme sensors to probe metal ions in living cells and in vivo, including several challenges that we were able to overcome for this application, such as DNAzyme delivery, spatiotemporal control, and signal amplification. Furthermore, we have identified a key remaining challenge for the quantitative detection of metal ions in living cells and present a new design and the results of a Förster resonance energy transfer (FRET)-based DNAzyme sensor for the ratiometric quantification of Zn in HeLa cells. By converting existing DNAzyme sensors into a ratiometric readout without compromising the fundamental catalytic function of the DNAzymes, this FRET-based ratiometric DNAzyme design can readily be applied to other DNAzyme sensors as a major advance in the field to develop much more quantitative metal-ion probes for biological systems.
许多不同的金属离子参与各种生物功能,包括金属组学和运输,尽管早在 40 多年前就有了钙金属传感器的第一个报道,但目前只有少数几种金属离子有有效的传感器。为了扩大可以在生物系统中探测的金属离子数量,我们和其他实验室采用体外选择方法来获得对特定金属离子具有高特异性的金属特异性 DNA 酶,然后使用催化信标方法将这些 DNA 酶转化为这些金属离子的荧光传感器。在这篇论坛文章中,我们总结了最近在开发这些 DNA 酶传感器以探测活细胞和体内金属离子方面取得的进展,包括我们能够克服的一些应用挑战,例如 DNA 酶传递、时空控制和信号放大。此外,我们还确定了在活细胞中定量检测金属离子的一个关键遗留挑战,并提出了一种新的设计和基于Förster 共振能量转移(FRET)的 DNA 酶传感器的结果,用于在 HeLa 细胞中对 Zn 进行比率定量。通过将现有 DNA 酶传感器转换为比率读出,而不影响 DNA 酶的基本催化功能,这种基于 FRET 的比率 DNA 酶设计可以作为该领域的一个重大进展,很容易应用于其他 DNA 酶传感器,以开发更定量的生物系统金属离子探针。