Field Intelligence Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Sci Rep. 2019 Aug 1;9(1):11157. doi: 10.1038/s41598-019-47256-8.
The measurement of light absorption and scattering properties of biological materials has several diagnostic and therapeutic applications. We can measure these properties for skin without contact using structured illumination and imaging. However, building simple handheld devices remains challenging due to motion artefacts and moving targets. To overcome this limitation, we project random speckle patterns instead of discrete spatial frequencies on the target. Since random patterns are spatially broadband, they capture more information per image, enabling frame-by-frame analysis. In this paper, we describe the statistics of objective speckles and demonstrate how the optical system is designed for spatially bandlimited illumination. Next, we use a diverse set of liquid tissue phantom to validate the method. We successfully demonstrate that a calibrated instrument can independently predict the two primary light transport properties of a homogeneous turbid system. This work is a starting point for analysing skin and other heterogeneous biological media in the future.
生物材料的光吸收和散射特性的测量具有多种诊断和治疗应用。我们可以使用结构照明和成像技术来非接触式测量皮肤的这些特性。然而,由于运动伪影和移动目标,构建简单的手持式设备仍然具有挑战性。为了克服这一限制,我们在目标上投射随机斑点图案而不是离散的空间频率。由于随机图案在空间上是宽带的,因此它们在每一帧图像中捕获更多的信息,从而实现逐帧分析。在本文中,我们描述了客观斑点的统计特性,并展示了如何为空间带限照明设计光学系统。接下来,我们使用各种液体组织模拟体来验证该方法。我们成功地证明了校准后的仪器可以独立预测均匀混浊系统的两种主要光传输特性。这项工作为未来分析皮肤和其他异质生物介质奠定了基础。