进退两难:CCN1/CYR61和CCN2/CTGF是微血管硬度的仲裁者吗?
Caught between a "Rho" and a hard place: are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness?
作者信息
Chaqour Brahim
机构信息
Department of Cell Biology and Department of Ophthalmology, State University of New York - SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
出版信息
J Cell Commun Signal. 2020 Mar;14(1):21-29. doi: 10.1007/s12079-019-00529-3. Epub 2019 Aug 2.
The extracellular matrix (ECM) is a deformable dynamic structure that dictates the behavior, function and integrity of blood vessels. The composition, density, chemistry and architecture of major globular and fibrillar proteins of the matrisome regulate the mechanical properties of the vasculature (i.e., stiffness/compliance). ECM proteins are linked via integrins to a protein adhesome directly connected to the actin cytoskeleton and various downstream signaling pathways that enable the cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. However, cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, ischemia and aging compromise the mechanical balance of the vascular wall. Stiffening of large blood vessels is associated with well-known qualitative and quantitative changes of fibrillar and fibrous macromolecules of the vascular matrisome. However, the mechanical properties of the thin-walled microvasculature are essentially defined by components of the subendothelial matrix. Cellular communication network (CCN) 1 and 2 proteins (aka Cyr61 and CTGF, respectively) of the CCN protein family localize in and act on the pericellular matrix of microvessels and constitute primary candidate markers and regulators of microvascular compliance. CCN1 and CCN2 bind various integrin and non-integrin receptors and initiate signaling pathways that regulate connective tissue remodeling and response to injury, the associated mechanoresponse of vascular cells, and the subsequent inflammatory response. The CCN1 and CCN2 genes are themselves responsive to mechanical stimuli in vascular cells, wherein mechanotransduction signaling converges into the common Rho GTPase pathway, which promotes actomyosin-based contractility and cellular stiffening. However, CCN1 and CCN2 each exhibit unique functional attributes in these processes. A better understanding of their synergistic or antagonistic effects on the maintenance (or loss) of microvascular compliance in physiological and pathological situations will assist more broadly based studies of their functional properties and translational value.
细胞外基质(ECM)是一种可变形的动态结构,它决定了血管的行为、功能和完整性。基质体中主要球状和纤维状蛋白质的组成、密度、化学性质和结构调节着脉管系统的机械性能(即硬度/顺应性)。ECM蛋白通过整合素与直接连接到肌动蛋白细胞骨架和各种下游信号通路的蛋白黏附体相连,使细胞能够以协调的方式对外界刺激做出反应,并维持最佳的组织硬度。然而,糖尿病、血脂异常、高血压、缺血和衰老等心血管危险因素会损害血管壁的机械平衡。大血管的硬化与血管基质体中纤维状和纤维大分子的众所周知的定性和定量变化有关。然而,薄壁微血管的机械性能基本上由内皮下基质的成分决定。CCN蛋白家族的细胞通讯网络(CCN)1和2蛋白(分别也称为Cyr61和CTGF)定位于微血管的细胞周围基质并在其中发挥作用,构成微血管顺应性的主要候选标志物和调节因子。CCN1和CCN2结合各种整合素和非整合素受体,并启动调节结缔组织重塑和损伤反应、血管细胞相关机械反应以及随后炎症反应的信号通路。CCN1和CCN2基因本身对血管细胞中的机械刺激有反应,其中机械转导信号汇聚到共同的Rho GTPase途径,该途径促进基于肌动球蛋白的收缩性和细胞硬化。然而,CCN1和CCN2在这些过程中各自表现出独特的功能属性。更好地了解它们在生理和病理情况下对微血管顺应性维持(或丧失)的协同或拮抗作用,将有助于更广泛地研究它们的功能特性和转化价值。
相似文献
J Cell Commun Signal. 2020-3
Trends Dev Biol. 2013
J Cell Commun Signal. 2023-6
Front Cell Dev Biol. 2022-4-14
引用本文的文献
Am J Physiol Gastrointest Liver Physiol. 2024-8-1
J Cell Commun Signal. 2023-12
Genes Dis. 2022-5-26
J Cell Commun Signal. 2023-6
Int J Mol Sci. 2022-12-6
Biomolecules. 2022-2-3
本文引用的文献
Mol Cell Biol. 2019-8-27
Adv Exp Med Biol. 2018