Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
Int J Mol Sci. 2020 May 15;21(10):3487. doi: 10.3390/ijms21103487.
The extracellular matrix (ECM) is critical in all aspects of vascular development and health: supporting cell anchorage, providing structure, organization and mechanical stability, and serving as a sink for growth factors and sustained survival signals. Abnormal changes in ECM protein expression, organization, and/or properties, and the ensuing changes in vascular compliance affect vasodilator responses, microvascular pressure transmission, and collateral perfusion. The changes in microvascular compliance are independent factors initiating, driving, and/or exacerbating a plethora of microvascular diseases of the eye including diabetic retinopathy (DR) and vitreoretinopathy, retinopathy of prematurity (ROP), wet age-related macular degeneration (AMD), and neovascular glaucoma. Congruently, one of the major challenges with most vascular regenerative therapies utilizing localized growth factor, endothelial progenitor, or genetically engineered cell delivery, is the regeneration of blood vessels with physiological compliance properties. Interestingly, vascular cells sense physical forces, including the stiffness of their ECM, through mechanosensitive integrins, their associated proteins and the actomyosin cytoskeleton, which generates biochemical signals that culminate in a rapid expression of matricellular proteins such as cellular communication network 1 (CCN1) and CCN2 (aka connective tissue growth factor or CTGF). Loss or gain of function of these proteins alters genetic programs of cell growth, ECM biosynthesis, and intercellular signaling, that culminate in changes in cell behavior, polarization, and barrier function. In particular, the function of the matricellular protein CCN2/CTGF is critical during retinal vessel development and regeneration wherein new blood vessels form and invest a preformed avascular neural retina following putative gradients of matrix stiffness. These observations underscore the need for further in-depth characterization of the ECM-derived cues that dictate structural and functional properties of the microvasculature, along with the development of new therapeutic strategies addressing the ECM-dependent regulation of pathophysiological stiffening of blood vessels in ischemic retinopathies.
细胞外基质 (ECM) 在血管发育和健康的各个方面都至关重要:支持细胞附着,提供结构、组织和机械稳定性,并作为生长因子和持续存活信号的汇。ECM 蛋白表达、组织和/或性质的异常变化,以及随之而来的血管顺应性变化,影响血管舒张反应、微血管压力传递和侧支灌注。微血管顺应性的变化是引发、驱动和/或加剧多种眼部微血管疾病的独立因素,包括糖尿病视网膜病变 (DR) 和玻璃体视网膜病变、早产儿视网膜病变 (ROP)、湿性年龄相关性黄斑变性 (AMD) 和新生血管性青光眼。同样,利用局部生长因子、内皮祖细胞或基因工程细胞输送进行大多数血管再生治疗的主要挑战之一是,再生具有生理顺应性特性的血管。有趣的是,血管细胞通过机械敏感整合素及其相关蛋白和肌动球蛋白细胞骨架感知物理力,包括其 ECM 的刚度,这些物理力产生生化信号,最终导致细胞外基质蛋白(如细胞通讯网络 1 (CCN1) 和 CCN2(也称为结缔组织生长因子或 CTGF)的快速表达。这些蛋白的丧失或获得功能会改变细胞生长、ECM 生物合成和细胞间信号传递的遗传程序,最终导致细胞行为、极化和屏障功能的改变。特别是,细胞外基质蛋白 CCN2/CTGF 的功能在视网膜血管发育和再生中至关重要,在这个过程中,新的血管形成并在假定的基质硬度梯度下投资预先形成的无血管神经视网膜。这些观察结果强调了需要进一步深入研究决定微血管结构和功能特性的 ECM 衍生线索,以及开发新的治疗策略来解决缺血性视网膜病变中血管病理僵硬的 ECM 依赖性调节。